What do we know so far of cosmic neutrinos?
Highlights of the cosmic discoveries

* Diffuse Cosmic Neutrino Flux
* Cosmic Sources

e Galactic Neutrinos

* The Unexpected



A neutrino beam ‘for free’

Cosmic rays hit the atmosphere
=> particle showers

Particles decays
=> Muon/Electron neutrinos
created in ratio 2:1

Backgrounds for cosmic neutrino
searches, but useful
for neutrino ocillation studies
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Flavors and neutrino/antineutrinos
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Conventional atmospheric neutrino flux
from kaon and pion decays

* Mainly muon neutrinos
* More neutrinos than anti-neutrinos

* Fluxes depend on atmospheric seasonal changes
-> slight annual flux changes

In addition ‘prompt flux’:
Neutrinos from decay of heavy mesons (D-mesons)

* Higher energies, harder energy spectrum

* First hint of this flux component seen by now in IceCube




~1km3 detector:

Atmospheric background & cosmic neutrinos

Atmospheric p 10° per year
Atmospheric v 10* per year

Cosmic v ~100 per year
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High energies -> Cosmic neutrinos dominate
In order to identify sources: Time / space coincidence with other cosmic probes




Diffuse cosmic neutrino flux



The two first cosmic neutrinos detected by IceCube

Light detection in the detector
1.14 £ 0.17 PeV

1.04 £0.16 PeV
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High energy events could not be explained by atmospheric background
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Active veto

Veto allows to cleanly identify
neutrino interactions
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Active veto
Veto

Veto allows to cleanly identify neutrino
interactions

Reduces atmospheric neutrino
‘background’ from above due to

signals of high-energy muon accompanying
neutrino production

Led to discovery of many more
cosmic neutrino candidates
HESE: High Energy Starting Events
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High energy diffuse neutrino flux

Many more searches established the cosmic diffuse neutrino flux
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Many more searches established the cosmic diffuse neutrino flux
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New: A ‘broken power law’ clearly identified
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Potential differences could be expected from different event samples:

* Different sky regions probed
» Different energy ranges probed
* Different flavors




Different source scenarios
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Different cosmic source scenarios
Ve! ViV,

‘Standard ‘
-> charged pion decay, muon decay

1:2:0
Muon damped source
-> strong magnetic fields, muon decay suppressed
-> pion decay dominant
0:1:0
Neutron beam source
-> extremely strong magnetic field
-> cosmic rays heavy nuclei
1:0:0

Note: Also different neutrino/antineutrino ratios




Neutrino flavor ratio at Earth

Different astrophysical scenarios will lead
to different observed flavor compositions

Potential to find new physics effects

Flavor ratio can be energy dependent

In neutron decay scenario only
antineutrinos
neutrino telescopes don’t distinguish

neutrinos and antineutrinos,
but Glashow resonance occurs
only for antineutrinos
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C. A. Argiielles , K. Farrag, T. Katori, S. Mandalia, ICRC2019




Neutrino flavor ratio at Earth

Different astrophysical scenarios will lead
to different observed flavor compositions

Potential to find new physics effects
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Neutrino flavor ratio at Earth

‘Standard’ phase space
-> Deviations indicate new physics

— source

C. ArgBRluelles, T. Katori and J. Salvado, Phys.Rev.Lett. 115 (2015) 161303



IceCube measurement
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Prospects for measurements — energy dependence
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Cosmic neutrino sources



22 September 2017 B
Blazar TXS 0506 in flaring state -
-> High energy neutrino detected




Optical sky observations around the
IceCube observation

Blazar TXS 0506+056

Angular resolution crucial to identify
neutrino sources
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Y ray observations

2009-06 2010-11 2012-03 2013-07 2014-12 2016-04 2017-09

35 IC-170922A
Neutrino flare 2014/15

3.0 Gamma-ray flare 2017/18
-+  Fermi-LAT 300 MeV - 1 TeV
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Puzzling: Neutrino coincidence with y ray alert,
but no enhanced vy ray flaring in 2014

v ray absorption?




3 November 2022 Announcement by IceCube,

Evidence (>4 o) of neutrino emission from NGC 1068 (Messier 77)
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lceCube events around NGC 1068C

Events close to NGC 1068

Can you spot a source with
80 events (excess over background)?

DEC [degq]

Evidence for neutrino emission from the nearby active galaxy NGC1068, SCIENCE 2022, Vol 378, Issue 6619
Dataset. DOI: 10.21234/03fqg-rh11
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lceCube events around NGC 1068C

Events close to NGC 1068

Can you spot a source with

80 events (excess over background)?

Red: Events with log(E/GeV)>3.5

RA [deq]

Evidence for neutrino emission from the nearby active galaxy NGC1068, SCIENCE 2022, Vol 378, Issue 6619

Dataset. DOI: 10.21234/03fg-rh11
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lceCube events around NGC 1068C

Events close to NGC 1068

Can you spot a source with

80 events (excess over background)?

Red: Events with log(E/GeV)>3.5

RA [deq]

Evidence for neutrino emission from the nearby active galaxy NGC1068, SCIENCE 2022, Vol 378, Issue 6619

Dataset. DOI: 10.21234/03fg-rh11
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lceCube events around NGC 1068
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Evidence for neutrino emission from the nearby active galaxy NGC1068, SCIENCE 2022, Vol 378, Issue 6619
Dataset. DOI: 10.21234/03fq-rh11
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lceCube events around NGC 1068
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Search for event excess by use of likelihood evaluation:

- Maximize likelihood L at each point in the sky
- Signal and background PDFs contain spatial and energy terms

events n N —n
7
Spatial term for likelihood was: Si(|Ti — Zs|,04) = 1 (in_ms‘Q)
patial term for likelihood was: (|2 — 2, 04) = 27“7%2 exp 50

Assumes here Gaussian shape of resolution,
but can be replaced also by non-gaussian shape



Refined resolution for the NGC 1068 analysis
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IceCube events around NGC 1068
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Galactic neutrino flux



One of the first neutrino skies from IceCube

7.5 years data (102 events)

Largest TS

Many events high
energy cascades
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2017 paper 2019 paper

Equatdrial Coord.
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* Deep learning improved
resolution by 2, sensitivity by 3
* 13 years of data Galactic Plane:
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Milky Way
viewed in
neutrinos

atomic hydrogen
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Galactocentric y [kpc]
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The Unexpected
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Unigque event




Tilt amplitude

amplitude [mrad]

KM3-230213A

31-10-22

A moving detector
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Tilt Compared to tilt of tower of Pisa?

01-09-23

Tower of Pisa:
~4 degrees

4.5deg

Detector positions
monitored every 10
minutes with acoustic
signals

Position accuracy: ~20cm




A very well reconstructed muon

Intrinsic reconstruction uncertainty: ~0.1deg
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IceCube

High energy cascade ‘Bert’

Likelihood fit on the waveforms

Shaded areas disregarded
(saturation/ systematics)

High energy events direction
resolution 7-25 degrees

Distance to source (vertical) [m]
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entries

Unique Event

* Light profile consistent with at least 3 large energy depositions
along the muon track

e Characteristic of stochastic losses from very high energy muons
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Aantal PMTs

log10( Number of triggered PMTs )
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Energie

Energy estimate

Energy loss simulated for and
R muons with the very same
. : location

3672 PMTs (35%) were triggered in
the detector

e Muons simulated at 10 PeV almost
never generate this much light
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Simulations Valentin Pestel (Caen)



Fraction of MC events

Energy estimate

Muon energy
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Estimate of the muon energy:

E, = 120%5:° Pev

Estimate of neutrino energy:
E, = 2201370 pev

(assumption: E spectrum)
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Where did it come from?

Horizontal muon from a neutrino interaction

Atmospheric
muons,
neutrino neutrinos




It can’t be an atmospheric muon

Distance travelled by 100 EeV muons

106 % 1 T T l 1 I T I 1 T T I T T T I T T 1 I T T 1 I T T T 1 T T l 1 T T I 1 T T ?
10° 3
= — E, =100 EeV .
10* —
10° Distance 3
o assuming =
10°E cosB=-0.011 3
e E
1E- e
10—1 _ L1 1 l L1 il I | N - ] l 11 | l 11 | l | T - ] l 11 | l 11 [ 11 1 I { I - ] ]
0 20 40 60 80 100 120 140 160 180 200
lenght / km

Less than 40km!
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Simulations: Isotropic 100 PeV neutrino flux

interacting neutrinos
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Most likely detection
Is from a horizontal direction!
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* 3.5km de

,
¥
7 0 2

Internatlonal Bathymetric Chart of the Mediterranean
v https://wi[{/wf".”rjgdc;nqaa.gov/mgg/ibcm/ibcmbath.html



https://www.ngdc.noaa.gov/mgg/ibcm/ibcmbath.html

How accurate do we know the

absolute orientation/tilt of the detector?
3.5 km deep!

e Phasel

« MEOC-2

e Emitter positions
e ARCAlines

f-3450
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\“\ e
40171 o

587400
587500
587600
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N,
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Transfer of GPS coordinates from Sea Surface
during deployments with acoustic signals

Comparison of 2 existing bathymetric data sets
Check average tilt of the lines

Evaluation of the cosmic ray shadow of the
moon/sun
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Check the shadow of the moon/sun in cosmic rays
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Probing independent rotations

Credit: Jelle Oonk, Leiden University




Effects of Misalignment

a=0.0° : B=0.0°

y =0.0°

Y [deq]

Credit: Jelle Oonk, Leiden University



Effects of Misalignment

a=-1.0° _ B=-1.0°

y =-1.0°

Y [deg]

Credit: Jelle Oonk, Leiden University



Check the shadow of the moon/sun in cosmic rays

Primary \
CR \ Sun
ORCA-6 Sun
{ (6.20)
:‘;;::. el S : | -

o "
ARHE)
i\

Secondary
CR

3 2 1 0 1 2 3
Xs [deg]

X%n _X%m
ARCA-21 Moon
(3.20)

Confirmation of good data filtering,calibration,
reconstruction!
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Pointing on the sky - suspect sources (1): Blazars - -«
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Pointing on the sky - suspect sources (1): Blazars
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* Large uncertainy region

* Intrinsic reconstruction uncertainty
~0.1deg

e Current uncertainty dominated by
uncertainty in absolute detector
orientation

* New acoustic beacon deployments with
high accuracy (1m) will enable to measure
absolute orientation

 Moon shadow analysis will serve as cross
check

=> We will in the future improve on the
direction information of this event!




#6 0605-085
Fermi-LAT

y-ray observations
1-100 GeV

#8: PMN J0606-0724
OVRO/RATAN

radio observations
15GHz

#1: MRC 0614-083
eROSITA/Swift-XRT
X-ray observations
0.2-2.3 keV

KM3-230213A Blazar candidates

KM3-230212A BLAZAR COUNTERPARTS
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TVIET i & (OB 080 R/,
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(a) The Fermi-LAT light curve and a VLBI image of 0605-085: the brightest radio source in the

neutrino localization region that experiences a gamma-ray flaring activity around the peutrino arrival
(Section 5.1).
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.. L.0O]PMN J0s06-0724 { OVRO (15 GHz) { RATAN (15 GHz)
'§ =05 ﬁ xj \
55000 56000 57000 58000 50000 60000
Time [MJD|

(b) The radio light curve for PMN J0606-0724 that experiences a major flare in close coincidence to the
neutrino arrival (Section 5.2).
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o MRC 0614083 + «ROSITA (0.2-23 keV) 4 Swift-XRT (0.2-2.3 ke'V)
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3
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A {

55000 56000 57000 58000 50000 60000
Time [MJD)

(c) The X-ray light curve for MRC 0614-083 that indicates a flaring activity around the neutrino arrival
(Section 5.3).
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Pointing on the sky - suspect sources (2): Galactic?
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- Lo
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O  Stellar clusters
-20°1 ¢ X-ray binaries
A Microquasar candidates &
¥ Pulsars .
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Galactic Longitude

No obvious suspect, generally hard to achieve this high energy



Unexplored energy regime

Previous highest
LHC@CERN energy neutrino  This observation

<= Upper limits
meflem KM3-230213A

IceCube fits
—}— NST (2022)

~ —— HESE (2021)
Factor ~30 —— Glashow (2021)

Intensity of neutrinos

107 108
Neutrino energy [GeV]

Neutrino energy (logarithmic scale)



LHC@CERN Previous highest  this opservation
energy neutrino

Upper limits
KM3-230213A

IceCube fits
NST (2022)
HESE (2021)
Glashow (2021)
SPL 68% NST (2022)
SPL 68% HESE (2021)

Models
Cosmogenic band
Sources band
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Neutrino energy [GeV]




Unexplored energy regime

Upper limits

KM3NeT
weflen KM3-230213A E~2fit
weflem Joint £2 fit

Joint BPL fit (this work)

IceCube fits

wf= NST (2022)

=f= HESE (2021)

—+= Glashow (2021)
SPL 68% NST (2022)
SPL 68% HESE (2021)

07 10
Neutrino energy [GeV]

Best-fit flux taking into account non-observations
from IceCube and Auger




Varying the cosmogenic neutrino models

Source evolution

10’ 108
Neutrino energy [GeV]




Moving forward

Many neutrino observatories substantially growing, coming online

e Angular resolution crucial
-> expect improvements from refined reconstructions & lower intrinsic uncertainties (water)

* Multi - messenger observations key to unravel the actual high energy cosmic sources
-> connection between observatories essential

The neutrino sky has surprised us several times before
-> exciting decades ahead!



‘Draw me a neutrino’ contest 2020

winner:: Evangelos Zacharopoulos




