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Hands-On Exercises

» Exercises provided in jupyter notebooks

» Part 1 (today), part 2 (Thursday) will be made available in due time
» Please let us know if you are not able to run the notebooks

» Feel encouraged to team up!

» Feel free to ask questions or to discuss your observations!

https:
//git.e5.physik.tu-dortmund.de/qfuehring/ml_intro_handson/
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Hands-On Exercises: Part 1

@
» A small playground to get a feeling of different aspects training
a NN
» Tasks provided in a jupyter notebook: L E
https://git.e5.physik.tu-dortmund.de/qfuehring/ml_ - : ; |
intro_handson/-/blob/main/part_1.ipynb - 5 <@§§.

» Leaderboard to compare your results with others in task 1.3: B
https://keepthescore.com/board/tggjqlnyqrqre/
olean)

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning — Hands-On Session


https://git.e5.physik.tu-dortmund.de/qfuehring/ml_intro_handson/-/blob/main/part_1.ipynb
https://git.e5.physik.tu-dortmund.de/qfuehring/ml_intro_handson/-/blob/main/part_1.ipynb
https://keepthescore.com/board/tggjqlnyqrqre/

Hands-On Exercises: Part 1

h Learning rate

Epe
S ° » 000,000 a1

DATA FEATURES

Which dataset do

you want to use? you

Ratio of training to
test data: 50%

Noise: 0

Batch size: 10

REGENERATE

M. Bunse, Q. Fihring, and V. Jevtic

Which properties do
want to feed in?

Activation
- RelLU - None
+ — 1 HIDDEN LAYER
Y=
2 neurons

Deep Learning - Hands-On Session

Regularization

rate Problem type

- Classification

OUTPUT

Test loss 0.496
Training loss 0.494

o am:

&

(R
\\\@/\

‘s...,-/

O

Colors shows
data, neuron and

weight values - S

"\

]
]

i

0



Hands-On Exercises: Part 1

@
» A small playground to get a feeling of different aspects training
a NN
» Tasks provided in a jupyter notebook: L E
https://git.e5.physik.tu-dortmund.de/qfuehring/ml_ - : ; |
intro_handson/-/blob/main/part_1.ipynb - 5 <@§§.

» Leaderboard to compare your results with others in task 1.3: B
https://keepthescore.com/board/tggjqlnyqrqre/
olean)

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning — Hands-On Session


https://git.e5.physik.tu-dortmund.de/qfuehring/ml_intro_handson/-/blob/main/part_1.ipynb
https://git.e5.physik.tu-dortmund.de/qfuehring/ml_intro_handson/-/blob/main/part_1.ipynb
https://keepthescore.com/board/tggjqlnyqrqre/

— :

Hands-On Exercises: Part 2




Hands-On Exercises: Part 2

Task: Use a neural network to predict the
tracking efficiency of the LHCb detector
LHCb Upgrade 1

Context: The LHCb experiment can be used
to study hadron production rates (see
Michael’s lecture from Tuesday)

— Proton-proton collisions with a center-of-mass
energy of 13.6 TeV
— SMOG: Fixed target collisions of protons and
gas (e.g. He, O, etc)
— Spectrometer with hadron PID in forward
direction
— Measured rates can be used to improve
cosmic-ray air-shower simulations
— Tracking efficiency crucial for production rate
measurements
https:
//git.e5.physik.tu-dortmund.de/qfuehring/ml_intro_handson/-/blob/main/part_2.ipynb

TLHCb Upgrade 1 detector layout; E. Thomas,
https://cds.cern.ch/record/2947697
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Task: Use a neural network to predict the
tracking efficiency of the LHCb detector

— Simulation usually computationally expensive

— Use a fast NN-based surrogate model to
predict the efficiency

— Use kinematic properties of particles as input
features

Data: 3d histograms of generated and
reconstructed particles, binned in

— Pseudorapidity n (6 bins)
— Transverse momentum pr (25 bins)
— Azimuthal angle ¢ (12 bins)

https:
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Task: Use a neural network to predict the
tracking efficiency of the LHCb detector

Code: JAX-based skeleton code provided

— JAX: ML framework with NumPy-like APl and
automatic differentiation

— Familiar interface, still low-level access
— Data loading, preprocessing, plotting baseline
model, and training loop provided
— Exercises focus on implementing and studying
extensions to the baseline

An Example will be made accessible after
the session

https:
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