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Supervised Learning

Target: any quantity Y we want to predict (costly or impossible to measure)
Feature: any quantity X; we compute from observable quantities

Training Data: D = {(z;,y:) €X xY: 1<i<m}
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Supervised Learning

Target: any quantity Y we want to predict (costly or impossible to measure)
Feature: any quantity X; we compute from observable quantities

Training Data: D = {(z;,y:) €X xY: 1<i<m}

feature
feature

Structured data:
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» X, facilitate the prediction of Y,
e.g., through well-designed preprocessing
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Structured Data

df = fact.io.read_data( # pandas.DataFrame
"gamma_simulations_facttools_dl2.hdf5",
key = "events"

)

X = df[[ # select features
"length", # -> shape (n_events, n_features)
"width",
"num_islands",
"num_pixel_in_shower",
# ...
11.to_numpy()

y = df["corsika_event_header_total_energy"]

clf = sklearn.ensemble.RandomForestClassifier()
cUf.fit(X, y)

b 4g
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Structured Data

o\ — [z
o | — [

i | — ]

Logistic Regression:

RER)

Bo(Y =+1| X =2) = 5
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Structured Data

z1 \ — | P71

- Logistic Regression:
n | — 5]
. > =

RER)

Bo(Y =+1| X =2) = 5

i | — ]

x> .7
Y =-1 il xo > .4 Decision Trees:
X2 I o> 5 » recursively split X
— >’4 ' H
=i + » boost performance through ensembling
X1

These models perform very well & (if structure permits ‘-.-‘)
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Unstructured Data

images

time series

In pub-
lishing and
graphic de-
sign, Lorem
ipsum is

texts

graphs
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Unstructured Data

images

time series

In pub-
lishing and
graphic de-
sign, Lorem
ipsum is

texts

Deep Learning learns features as a part of the model «’

» no manual feature-engineering necessary

» instead, architecture optimization and more data are needed

«“
"

graphs
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Agenda
3. 1. 2. .
Machine learning = data o model o fit
1. Modeling assumptions
2. Fitting
3. Data and Assumptions
4. Concluding Remarks

+ Hands-On Exercises (Tue ~ 45 min, Thu ~ 90 min)
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Shallow Models

Polynomial Regression:

n

y=fs(@)+e where fs(z) =Y (8;a')

=0

» yeR, zeRY and 8; € R?

» (a,b) =

j=1

= Y% a;-b; is the scalar product
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Shallow Models

Polynomial Regression: y = fa(z) +¢, where fz(z)= Z(,Bi,xi)

=0
» yeR, zeRY and 8; € R?

» {(a,b) = ijl aj - b; is the scalar product

» typicalloss: Lp(B) = Y7, (v —fg(xi)f where (zi,y;) €D
and D = {(z;,y:) € X x Y : 1<i<m} is the training set
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Shallow Models

Logistic Regression: 7 = argmax Ps(Y =i|X = )
ie{1,2,...,C}
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Shallow Models

Logistic Regression: 7 = argmax Ps(Y =i|X = )
€{1,2,...,C} N—————
= p({Biz))
1 .
T~ ., 7L
1+Zj:2 e¥i

where p(v;) =

evi

1+Zf=2 ei
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Shallow Models

Logistic Regression: 7 = argmax Ps(Y =i|X = )
€{1,2,...,C} N—————
= p({Biz))
1
1=1

ST

evi

1+Z§=2 ei

where p(v;) =

The soft-max operation p projects to the unit simplex {p eRC:

input

xr —

pi20, 1= Z?:lpi}

log-odds

ﬁ%

(B, x

/ (B2, z 4>

>

Y| —

probabilities

3
=

]
>
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Shallow Models

Motivation: the Logistic Regression represents linear models of the log-odds.

P(Y=2|X=2) _ ?
logm = <527$>+€ > 0

PY=3|X=1a) _ ?
logm = <63,1‘>+6 > 0

-~

=k|X =12

logm <6C7£L'>+E > 0
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Shallow Models

Synopsis:

» Polynomial Regression =
a linear model of exponentiated inputs z*

» Logistic Regression =
a linear model of the log-odds

» The soft-max operation maps these log-odds
to (estimates of) class probabilities

input

log-odds

P
—

<ﬂ27 1> —

v o [Gom] —
G —

probabilities

] ]
M =

]

3
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Deep Networks

Deep Nets: use multiple (logistic regression-like) layers

» learnable linear combinations (3, -)

input

T

x

]

/AN
ii
<o« | ||= | hidden layer 1

(B1,w, )

(Ba,

E? E,b
5, T hidden layer 2

» )

o
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- [Em] 2,
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Deep Networks

Deep Nets: use multiple (logistic regression-like) layers

» learnable linear combinations (3, -)

» non-linear activations o

%
- max(0, ) §’
1 { / tanh(+) é
/ o
' ' 167. + <
—1 1 v a
-1 = a((Br, ) <
é o((Br2, ) \
xT
\ o({B1,w, T))

a({B2,1,
({B2,2, *)

o ({B2,

I I hidden layer 2
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Universal Approximation

Density: A family G of models can approximate any function f e C(R"),
if Ve >0, compact K CR", 3¢ € G, such that

max [|f(z) - g(@)|| < e

" Pinkus, “Approximation theory of the MLP model in neural networks”, 1999.

2 Kidger and Lyons, “Universal approximation with deep narrow networks”, 2020.
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Universal Approximation

Density: A family G of models can approximate any function f e C(R"),
if Ve >0, compact K CR", 3¢ € G, such that

max [|f(z) - g(@)|| < e

» One hidden layer of arbitrary width is dense iff ¢ is non-polynomial.’

» Arbitrarily deep nets with minimum width d+ C + 2 are dense.?

" Pinkus, “Approximation theory of the MLP model in neural networks”, 1999.
2 Kidger and Lyons, “Universal approximation with deep narrow networks”, 2020.
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Universal Approximation

Density: A family G of models can approximate any function f e C(R"),
if Ve >0, compact K CR", 3¢ € G, such that

max [|f(z) - g(@)|| < e

» One hidden layer of arbitrary width is dense iff ¢ is non-polynomial.’

v

Arbitrarily deep nets with minimum width d+ C 42 are dense.?

» Deep nets are often more efficient approximators than wide shallow nets.

v

Density does not imply the existence of a learning algorithm to select g from G

" Pinkus, “Approximation theory of the MLP model in neural networks”, 1999.
2 Kidger and Lyons, “Universal approximation with deep narrow networks”, 2020.
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Over- and Underfitting

prediction error

—— testing

, over-fitting

~

training

model capacity

b 4g

Under-Fitting:
» approximation

» high bias, low variance
Over-Fitting:
» memorization

» low bias, high variance
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Over- and Underfitting
>4
interpolation

threshold

Under-Fitting:

testing » approximation

training » high bias, low variance

, over-fitting
double descent

Over-Fitting:

~

» memorization

» low bias, high variance

prediction error

\ / Double Descent:

- » interpolation®
model capacity P

3 Belkin et al., “Reconciling modern machine-learning practice and the classical bias-variance trade-off”, 2019

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction 16



Inductive Biases '

Convolution: S(i,j) = (K % I)(4,j) = I(t—m,j—n) - K(m,n)

yn
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Inductive Biases

Convolution: S(i,j) = (K % I)(4,j) = I(t—m,j—n) - K(m,n)

yn

Pooling: only maintain the maximum of each neighborhood.
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Inductive Biases

Convolution: S(i,j) = (K % I)(4,j) = I(t—m,j—n) - K(m,n)

,n
Pooling: only maintain the maximum of each neighborhood.
» translation invariance

» sparse interactions

» parameter sharing

In general, specialized layers are used to introduce biases that suit the data.
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Inductive Biases

Attention(X1, X3) = o((X1Wq)(X2Wik)" ) XoWy  explicitly models interactions.

Xl —_— WQ
| I Q
— X
@
X2 - Wk O'() —_T
X
w ——
Wy
Attention
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Inductive Biases

Attention(X1, X3) = o((X1Wq)(X2Wik)" ) XoWy  explicitly models interactions.

Xl —_— WQ
L | °
x
Xz = Wk a(:) + + —
x
Wy

Attention

Attention Block
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Modeling

Synopsis:
» Deep Nets use layers of increasingly abstract representations

» Layers consist of linear parameters and non-linear activations

b 4g
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Modeling

Synopsis:

» Deep Nets use layers of increasingly abstract representations
» Layers consist of linear parameters and non-linear activations
» Model Capacity should consider sample sizes (over-/under-fitting)

» Inductive Biases facilitate learning

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction 19



Modeling

Synopsis:

» Deep Nets use layers of increasingly abstract representations

» Layers consist of linear parameters and non-linear activations

» Model Capacity should consider sample sizes (over-/under-fitting)

» Inductive Biases facilitate learning

Practical Recommendations:

» Build on Existing Solutions for similar problems
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Modeling

Synopsis:

» Deep Nets use layers of increasingly abstract representations
» Layers consist of linear parameters and non-linear activations
» Model Capacity should consider sample sizes (over-/under-fitting)

» Inductive Biases facilitate learning

Practical Recommendations:

» Build on Existing Solutions for similar problems

» Extensively Tune the hyper-parameters (# layers, # features per layer, ...
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Modeling

Synopsis:

» Deep Nets use layers of increasingly abstract representations

» Layers consist of linear parameters and non-linear activations

» Model Capacity should consider sample sizes (over-/under-fitting)

» Inductive Biases facilitate learning

Practical Recommendations:

» Build on Existing Solutions for similar problems
» Extensively Tune the hyper-parameters (# layers, # features per layer, ...)

» Assumptions > Depth hence, prioritize baseline methods
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Empirical Risk Minimization

Notation:

» hs: X — R is our model, parametrized by 3 € R? (fixed architecture)

» {(hg(z),y) measures the deviation between hg(z) and y

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction
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Empirical Risk Minimization

Notation:

» hs: X — R is our model, parametrized by 3 € R? (fixed architecture)

» {(hg(z),y) measures the deviation between hg(z) and y

Ultimate Goal: minimize the expected risk:

R(hst) = Eipyyor (o)) = / B(X =2, Y =) - (hs(a).y) dedy
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Empirical Risk Minimization

Notation:

» hs: X — R is our model, parametrized by 3 € R? (fixed architecture)

» {(hg(z),y) measures the deviation between hg(z) and y

Ultimate Goal: minimize the expected risk:

R(hﬁaz) = E(w,y)NlP’(E(hﬁ(I)7y)) = / IP(X =z, Y= y) é(hﬁ(x)7y) dz dy

X xY
Approach: approximate R(hg,f) empirically with the training data D
1 m
(h = =Y l(hs(@i),yi hgs,
Rp 8,4 m; (i) y ﬁ R(hgs,£)

and choose " = argminggs Rp(hs, ).

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction 21



Loss Functions

Mean Squared Error: ((h(z),y)

Cross Entropy / Logistic Loss: (' (h(z),y)

2

= [[r@ ],

c
_ Z Sy=ilog([h()]:)

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning — An Introduction
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Loss Functions

Mean Squared Error: ((h(z),y) = Hh(gc) — sz
c
Cross Entropy / Logistic Loss: (' (h(z),y) = — Z Sy=ilog([h()]:)
=1

Proper Scoring Rule: any /: Z x Y — R for which argmin, o, R(h;¢) = P(Y | X).

» cross entropy is proven to be such a loss function

» hence, ERM with cross entropy readily learns P(Y | X)

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction
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Empirical Risk Minimization (Revisited)

b 4g

Ultimate Goal: minimize the expected risk:

R(hﬁ7 Z) = E(z,y)NJP’ (Z(hﬁ (x)v y))

ERM: approximate R(hg,¢) empirically with the training data D

Rp(hg, 0) > t(hp(@),y) —— R(hg,0)
i=1

1
m 4 m— o0

and choose " = argmingge ED(hﬁ,Z).

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction 23



Stochastic First-Order Optimization '

b4
Ideas:
» Rp(hg,!) is just a function to be
minimized — Rp
~ © Rp(g®
A p(8™)
B
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Stochastic First-Order Optimization '
@
Ideas:
» Rp(hg,0) is just a function to be
minimized — }/%D
» use gradient information to reduce B © Rp(8™)
Rp(hg,¢) until g* is found. Vsho(8™)
» ignore higher-order derivatives to V%RD(5<k))
safe computation time.
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Stochastic First-Order Optimization

Ideas:

» Rp(hg,0) is just a function to be
minimized — Rp

» use gradient information to reduce = © Rp(8™)
Rp(hg,¢) until g* is found. Vsho(8™)

» ignore higher-order derivatives to V%RD(5<k))
safe computation time.

» introduce randomness into the
gradients to improve convergence.
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Stochastic First-Order Optimization

o
Stochastic Gradient Descent (SGD): in each step k, reduce the risk ﬁD(hg,é)
w.r.t. a single, random example.
B* the parameter vector of h

B B — 0V t(h(a,w, 8), 5,0 ) where { a® the step size

(z;0,Y;00) the example
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Stochastic First-Order Optimization

o
Stochastic Gradient Descent (SGD): in each step k, reduce the risk ﬁD(hg,E)
w.r.t. a single, random example.
B* the parameter vector of h

B B — 0V t(h(a,w, 8), 5,0 ) where { a® the step size

(z;0,Y;00) the example

Full Gradient Descent (GD): in each step k, reduce ﬁD(hg,é) w.r.t. all examples.

~ 1
B e B = a®V, Rolhs, ) = Y = a® 3" Vae(h(a, 5). 4 )
=1
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Stochastic First-Order Optimization

Convergence Rate*: worst-case # iterations, in which ﬁD(hﬁ,g) < ED(hg*,E) +€

4 Bottou, Curtis, and Nocedal, “Optimization Methods for Large-Scale Machine Learning”, 2018.

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction
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Stochastic First-Order Optimization

Convergence Rate*: worst-case # iterations, in which ED(hB,E) < ED(hB*,E) +€
» GD: x m-log(%)

» SGD: x 1 (independent of m)

4 Bottou, Curtis, and Nocedal, “Optimization Methods for Large-Scale Machine Learning”, 2018.
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Stochastic First-Order Optimization

Convergence Rate*: worst-case # iterations, in which ED(hg,é) < ED(hB*,E) +€
» GD: x m-log(%)
» SGD: x 1 (independent of m)

» For SGD, the same rate applies to R(hs,?) (independent of D if m > k)

Hence, SGD has an amazing performance for large data sets.

4 Bottou, Curtis, and Nocedal, “Optimization Methods for Large-Scale Machine Learning”, 2018.
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Stochastic First-Order Optimization

Noise Reduction: use mini-batches instead of single examples,

b
5(k+1) pa B<k)_a(’c)%Zvﬁﬁ(h(:pb“g(k)),ybj), where
=1

» smaller variance of update steps
» stepsize {a®} is easier to tune

» most common approach for deep nets

b m.

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction
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Stochastic First-Order Optimization

Noise Reduction: use mini-batches instead of single examples,

b
1
5(k+1) pa 5<k) _ oﬂc)5 Z vﬁz(h(:pb“g(m),ybi), where b < m.
=1

» smaller variance of update steps
» stepsize {a®} is easier to tune

» most common approach for deep nets

Learning Rate Scheduling:

» even with mini-batches, noise can eventually prevent the reduction of ﬁD(hﬁ,Z)

» hence, decrease step sizes {a®)} over time

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction 27



Stochastic First-Order Optimization

b 4g
Momentum:
g(B™®) SGD, GD, or mini-batch gradient

A a weighting parameter

BEHD g0 (M) 44 M) (5% — D) where {

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction 28



Stochastic First-Order Optimization

b 4g
Momentum:
g(B™®) SGD, GD, or mini-batch gradient

A a weighting parameter

BEHD g0 (M) 44 M) (5% — D) where {

Accelerated Gradient a.k.a. Nesterov Momentum:
5(k+1) - ,B(k) _ g(ﬁ(k) +’Y(k) . (,B(k) _ B(k_l))) + ’V(k) . (B(k) _ ,B(k_l))

» momentum is applied before g(-)
» GD: optimal convergence rate « 6%
» SGD: good practical performance but (theoretical) convergence rate is not improved

» even better: if combined with adaptive gradients — Adam

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction 28



Backpropagation

Goal:

compute Vgl(h(z;, ), y:) where

Wi 8) = (B0, o((Bar, - 0B z))) )

z — | o(Br, @) |— | 0B ) |— -+

—| PB4, ) |—— h(=z)

M. Bunse, Q. Fihring, and V. Jevtic
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Backpropagation

Goal: compute Vgl(h(xz;, ), y:) where

h(xi, B) = P(<5d7 ¢ ((Ba-1,

z — | o(Br, @) |— | 0B ) |— -+

Chain rule of calculus: 0/(g(x)) = 0/(g) 99(x)
or dg Ox

o o(B )

—| PB4, ) |—— h(=z)
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Backpropagation

Goal: compute Vgl(h(xz;, ), y:) where

h(xi, B) = P(<5d7 ¢ ((Ba-1,

z — | o(Br, @) |— | 0B ) |— -+

df(g) 9g()
dg Ox

9f(g(x)) _
or

Chain rule of calculus:

each function f(z) also

of(x)

81’1 ’

Automatic Differentiation:

Vaf(z) = (

" Oz

o o(B )

—| PB4, ) |—— h(=z)

implements its gradient

of(x)

)T

M. Bunse, Q. Fihring, and V. Jevtic
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Deep Networks

Deep Nets: use multiple (logistic regression-like) layers

» learnable linear combinations (8,-)

» non-linear activations o

- max(0,+)
1 { / tanh(+)

* (8,%)

input

a((B1,1, z))
(B1,2, =)

—~

Q
hidden layer 1

I

/N

o({B1,w, z))

probabilities

P2

pc

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction
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Stochastic First-Order Optimization

Synopsis:

» ERM: we minimize Rp(hg,t) —— R(hg,£)

m— o0

» SGD: gradients randomized through sampling converge quickly for large m
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Stochastic First-Order Optimization

Synopsis:

4

ERM: we minimize ED(hg,Z) — R(hg, )

SGD: gradients randomized through sampling converge quickly for large m
Mini-Batching: common practice to reduce SGD gradient noise

LR Scheduling: common practice to balance the noise

Nesterov Momentum: can improve convergence

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction 31



Stochastic First-Order Optimization

Synopsis:

» ERM: we minimize ED(hg,Z) — R(hg, )

» SGD: gradients randomized through sampling converge quickly for large m
» Mini-Batching: common practice to reduce SGD gradient noise

» LR Scheduling: common practice to balance the noise

» Nesterov Momentum: can improve convergence

Practical Recommendations:

» Carefully Design Loss Functions to reflect your goals
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Stochastic First-Order Optimization

Synopsis:

4

ERM: we minimize ED(hB,Z) — R(hg, )

SGD: gradients randomized through sampling converge quickly for large m
Mini-Batching: common practice to reduce SGD gradient noise

LR Scheduling: common practice to balance the noise

Nesterov Momentum: can improve convergence

Practical Recommendations:

>

>

Carefully Design Loss Functions to reflect your goals

Use Popular First-Order Methods like Adam or SGD with Nesterov Momentum
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Data and Assumptions




A Premature Conclusion

Machine learning = data o model o fit

What we have learned:

» Deep Nets are universal function approximators
» Customized loss functions let them learn what we need

» We know effective ways of optimizing them
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A Premature Conclusion

Machine learning = data o model o fit

What we have learned:

» Deep Nets are universal function approximators
» Customized loss functions let them learn what we need

» We know effective ways of optimizing them

What could possibly go wrong? @
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Learning Assumptions

Recall that we approximate

through

R(hp,0) = Eayy~e(Uhp(2),y))

Bolhs, ) = — 3 £(hs(w:), )

1=

-

M. Bunse, Q. Fihring, and V. Jevtic
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Learning Assumptions

Recall that we approximate
R(h’ﬁaz) = ]E(ac,y)w]}”(z(hﬁ(x)?y))
through

1 m
R hﬂ? = Ezﬁ h/3 1’1 y’b
i=1

(l‘,y) ~ ]P) V (xvy) € DUDtest

Independent and Identical Distribution (11ID) Assumption:
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Learning Assumptions

Recall that we approximate
R(h’ﬁa Z) = E(z,y)w]l” (Z(hﬁ (ZC), y))
through

Data Set Shift breaks the IID assumption @
» D~ Ps (e.g., a simulation)

» Diest ~ Pr (e.g., a real detector)

» Ps #APr

(I,y) ~ ]P) V (il}',y) € DUDtest

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning — An Introduction



Types of Data Set Shift®

Recognize that P(X,Y) = PX|Y) - PY)

5 Kull and Flach, “Patterns of dataset shift”, 2014
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Types of Data Set Shift®

Recognize that P(X,Y) = PX|Y) - PY)

Label Shift:
Ps(X |Y)=Pr(X|Y)

Ps(Y) # Pr(Y)

5 Kull and Flach, “Patterns of dataset shift”, 2014
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Types of Data Set Shift®

Recognize that P(X,Y) = PX|Y) - PY)

Label Shift: Concept Shift:
Ps(X |Y)=Pr(X|Y) Ps(Y) =Pr(Y)

Ps(Y) # P (Y) Ps(X |Y) #Pr(X |Y)
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Types of Data Set Shift®
Recognize that P(X,Y) = PX|Y) - PY)
- PX) - P(Y|X)

Label Shift: Concept Shift:
Ps(X |Y)=Pr(X|Y) Ps(Y) =Pr(Y)

Ps(Y) # P (Y) Ps(X |Y) #Pr(X |Y)
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Types of Data Set Shift®

Recognize that P(X,Y) = PX|Y) - PY)

= PX) - PY|X)

Label Shift: Concept Shift: (Also) Concept Shift:
Ps(X |Y)=Pr(X|Y) Ps(Y)=Pr(Y) Ps(X) = Pr(X)
Ps(Y) # P (Y) Ps(X |Y) #Pr(X |Y) Ps(Y | X) #Pr(Y | X)

5 Kull and Flach, “Patterns of dataset shift”, 2014
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Types of Data Set Shift®

Recognize that P(X,Y) = PX|Y) - PY)

= PX) - PY|X)

Label Shift: Concept Shift: (Also) Concept Shift: Covariate Shift:
Ps(X |Y)=Pr(X|Y) Ps(Y)=Pr(Y) Ps(X) = Pr(X) Ps(Y | X) =Py (Y | X)
Ps(Y) # P (Y) Ps(X|Y) #Pr(X|Y)  Ps(Y | X)#Pr(Y | X) Ps(X) # Pr(X)

Correction Methods are available for each type, but require extra information

(additional data, more assumptions, ...) ™

5 Kull and Flach, “Patterns of dataset shift”, 2014
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Domain-Adversarial Unsupervised Domain Adaptation®

» Assume Concept Shift Ps(X |Y) #Pr(X |Y) and Ps(Y) =Pr(Y)
» Employ Unlabeled Data D7 = {z ~Pr(X)}

8 Ganin et al., “Domain-Adversarial Training of Neural Networks”, 2016
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Domain-Adversarial Unsupervised Domain Adaptation®

» Assume Concept Shift Ps(X |Y) #Pr(X |Y) and Ps(Y) =Pr(Y)
» Employ Unlabeled Data Dy = {z ~ Pr(X)}

— N
+| =+ —— Y
/ & S

layer 1

layer 2
layer n

 Ganin et al., “Domain-Adversarial Training of Neural Networks”, 2016
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Domain-Adversarial Unsupervised Domain Adaptation®

» Assume Concept Shift Ps(X |Y) #Pr(X |Y) and Ps(Y) =Pr(Y)
» Employ Unlabeled Data Dy = {z ~ Pr(X)}

— [a]
+| =+ —— Y
IS IS
- o IS
b — [ S— ——
T —|o|—|g >l o
g g g - =
\ .S £
-~ 8| - || —.. — _
£
54y, S :
° o

 Ganin et al., “Domain-Adversarial Training of Neural Networks”, 2016

{

1
0

if x € Dr
if (z,y) € D
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Class-Conditional Label Noise’

Label Noise:

» Training Labels y are randomly flipped versions of the ground-truth y

» Assumptions about the flipping process y — 4 are required

7 Menon et al,, “Learning from Corrupted Binary Labels via Class-Probability Estimation”, 2015
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Class-Conditional Label Noise’

Label Noise:

» Training Labels y are randomly flipped versions of the ground-truth y

» Assumptions about the flipping process y — 4 are required

Class-Conditional Noise: P(Y =+1|X=12) = a-P(Y =+1|X =2)+b

\27 b +
'~

o~

Y Y
P —
0=

7 Menon et al,, “Learning from Corrupted Binary Labels via Class-Probability Estimation”, 2015
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Deep Sets?

» Each instanceis aset {z; € X :1 <i <m} of variable size m

» Y are properties of such sets

8 Zaheer et al,, “Deep sets”, 2017
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Deep Sets®

» Each instanceis aset {z; € X :1 <i <m} of variable size m

» Y are properties of such sets

Xr; —

instance layer 1
| instance layer 2 |
1
+
| instance layer n |

<-4

8 Zaheer et al,, “Deep sets”, 2017
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Deep Sets® '

» Each instanceis aset {z; € X :1 <i <m} of variable size m

» Y are properties of such sets

— o~ IS
. . -
® ° — ™
>, 2 S m . <
& K] (5] ] o
) & 08 08 _ m ( )
Ti =8| =g |- g | — (;5(:1:1)—) ||| Y =P i (i
c = (= . = +
[ I © T [0} ()
- = S » »
17} 17} 17}
c S =

RSNR
)

8 Zaheer et al,, “Deep sets”, 2017
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Set Transformers®

Self-Attention Block: X

x

3]
9
o
S
o
¥=]
c
£
<

SAB

sXo0

Attention

Attention Block

® Lee et al, “Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks”, 2019
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Set Transformers®
o

Self-Attention Block: X

x
3]
9
o
c
k)
=}
c
£
<

Pooling by Attention:

Attention Block

PA
Set Encoder: SAB o ... o SAB o PA

Attention
Attention Block

® Lee et al, “Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks”, 2019
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Concluding Remarks




Should | Use Neural Networks?

Architecture Search vs feature engineering

Scale great for big data (but not for small data)

GPUs required as well as computation time for fitting
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Implementing Neural Networks

JAX, PyTorch, Tensorflow, or Keras?

» Keras, Tensorflow: established solutions

» PyTorch, JAX: maximum flexibility

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction
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Implementing Neural Networks

JAX, PyTorch, Tensorflow, or Keras?

» Keras, Tensorflow: established solutions

» PyTorch, JAX: maximum flexibility

JAX:

» JIT compilation speedups
» APl identical to Numpy/Scipy
» Clean functional programming style (clarity, separation of concerns)

» Evolving eco-system and fewer solutions
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42



Agenda
3. 1. 2. .
Machine learning = data o model o fit
1. Modeling assumptions
2. Fitting
3. Data and Assumptions
4. Concluding Remarks

+ Hands-On Exercises (Tue ~ 45 min, Thu ~ 90 min)

M. Bunse, Q. Fihring, and V. Jevtic Deep Learning - An Introduction
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Hands-On Exercises

https:
//git.e5.physik.tu-dortmund.de/qfuehring/ml_intro_handson
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