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Radio VLA with magnetic flowlines superposed on optical HST image
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Planck dust emlgsg agnefgﬂew Ilnes in the Polaris flare
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Interstellar gas phases

Molecular Cold atomic Warm atomic Warm ionized Hot ionized

T [K] 10 — 20 50 — 100 103 10 ~ 104 ~ 108

n, [cm-3] 102 — 106 20— 50 1-2 0.1-0.5 0.003 - 0.01
n./ny << 1 (0.3 -1)103 0.01 - 0.05 ~1 ~1
P/K 1000 — 2x10° 1000 — 5000 2000 -20000 1000 -5000 3000 - 10000
B [LG] >5 ~5 ~5 ~5 =5

N

> pg/k ~ 7000 cm3 K
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2. The role of magnetic fields in the Interstellar Medium
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Role of Galactic magnetic field:

Magnetic fields and (ionized)
matter are connected.

The Lorentz force couples
lons to magnetic fields...

...causing flux freezing of magnetic
field into plasma.
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Role of Galactic magnetic field:
drive gas dynamics

Filaments in clouds of atomic hydrogen...
... are shaped by magnetic fields
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Role of Galactic magnetic field:
drive gas dynamics

E.g. evolution of supernova remnants
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Role of Galactic magnetic field:
enable and slow down star formation

magnetic braking |

flux freezing in simulations... ... and observations
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Role of Galactic magnetic field:
Drive acceleration and propagation of cosmic rays
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Galactic magnetic fields:
deflect Ultra-High Energy Cosmic Rays

median values
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3. Origin and maintenance of Galactic magnetic fields
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Origin and maintenance
of galactic magnetic fields

Created by primordial magnetic fields:

- Possibly cosmological (in phase transitions? in inflation?)
- Some battery mechanism in interstellar plasma?

- Plasma instabilities?

Amplified and maintained by dynamo action:
- Mean-field dynamo
- Turbulent dynamo
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Mean-field (ax-w) dynamo

(B) Differential rotation: (C) Helical turbulence:
B, produced from B, B, produced from B,

Slide credit Anvar Shukurov
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Turbulent dynamo

\\\\' (' ‘. ‘ A\ \
\J tl&ﬁeid |ihes
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4. Detection of Galactic magnetic fields
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Detection methods:

PROCESS: PROBES FIELD IN COMPONENT: AT SPECTRAL
COMPONENT: REGION:

linear polarization due to | direction of B, dust Optical/near infrared

dust absorption

polarized dust emission | direction of B, dust Far infrared/submm

synchrotron emission strength of B, cosmic rays Radio

synchrotron linear B .oherent/Btotal cosmic rays Radio

polarization

Faraday rotation strength of B, lonized gas Radio

(linear polarization)

Zeeman effect strength of B, cold gas, stars Radio

Masers strength of B; angle | specific non- Radio

(|inear/circu|ar between B and line equilibrium

polarization) of sight conditions

Davis-Chandrasekhar- strength of B_herent | dust Optical/near infrared

Fermi (DCF)
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Measuring galactic magnetic fields:
1. Polarization due to dust absorption

.  Polarization of
R s ' background
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Detection methods:

PROCESS: PROBES FIELD IN COMPONENT: AT SPECTRAL
COMPONENT: REGION:

linear polarization due to | direction of B, dust Optical/near infrared

dust absorption

polarized dust emission | direction of B, dust Far infrared/submm

synchrotron emission strength of B, cosmic rays Radio

synchrotron linear B .oherent/Btotal cosmic rays Radio

polarization

Faraday rotation strength of B, lonized gas Radio

(linear polarization)
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polarization) of sight conditions
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Measuring galactic magnetic fields:
2. Polarized dust emission

.  Polarization of
R A ' background
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Measuring galactic magnetic fields:
2. Polarized dust emission

Credit: ESA/Planck collaboration /M.-A. Miville-Deschénes/CNRS
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Measuring galactic magnetic fields:
2. Polarized dust emission

OMC—1 ] _
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Detection methods:
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Measuring galactic magnetic fields:
3. Synchrotron emission

Synchrotron emission is caused by acceleration of relativistic cosmic ray
electrons in a magnetic field.

Ll (y-1)
Total synchrotron intensity is givenby I, o< NoB *> v~ >

for a cosmic-ray electron distribution N (E)dE = NoE™7dE

] E'flE'd Power-law
/ | - superposition
“ X X #. radiation
- II ] - =
{ X JE o Individual
! [ cleetron
non-refativistic electron (7,___/_;:, spectra
dipale pattemn (Y= U relativistic electron dipole pattern (Y > ” r

og “requency
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Measuring galactic magnetic fields:
3. Synchrotron emission

Assuming equipartition between magnetic and cosmic ray energy:

B

2/7 2 -

where S, = flux density;
D = distance;
V = volume of emitting gas

BUT: (Beck et al 2003)

If anisotropy in B: B4 overestimated

A

If B correlated with neg: B, and By, overestimated
Fletcer, Beck, Suw 8: Hubble heritage team
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Measuring galactic magnetic fields:
3. Synchrotron emission

Credit: ESA/Planck collaboration /M.-A. Miville-Deschénes/CNRS

Total intensity (Stokes |)

Linear polarization (Stokes Q,U)
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Detection methods:

PROCESS: PROBES FIELD IN COMPONENT: AT SPECTRAL
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Measuring galactic magnetic fields:

4. Synchrotron polarization

Polarization degree (for y = 5/2):

+ 1
=7 ~ 72%

y+ 3
Observed degree of polarization

BZ

1,reg

B2

1, tot

P = D

Measures the strength of the regular field in the
plane of the sky.
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Detection methods:

PROCESS: PROBES FIELD IN COMPONENT: AT SPECTRAL
COMPONENT: REGION:
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Measuring galactic magnetic fields:
4. Faraday rotation

3 r
— € /
Faraday depth: ¢ [rad m™] = 264/0 neB) dr 0.

2nmg

Polarization angle rotation: 46 « ¢A2
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Measuring galactic magnetic fields:
4. Faraday rotation

3 r
_ e ‘
Faraday depth: ¢ [radm ’] = 2 4 /0 ne B dr

2nmg

Polarization angle rotation: 46 « ¢A2

Source can be

- pulsars
(I) - polarized extragalactic point sources
- diffuse synchrotron emission
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Measuring galactic magnetic fields:
4. Faraday rotation

Extragalactic '‘point’ sources:
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Measuring galactic magnetic fields:
4. Faraday rotation

Extragalactic '‘point’ sources:

Hutschenreuter et al (2022)

E—

250

NN —
. Poal[rad m ]

Radboud Universitelt ; f-|§
%’hme&@\}

Marijke Haverkorn -- research school Bad Honnef — 22 Jan 2026



Measuring galactic magnetic fields:
4. Faraday rotation

Pulsars: e
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Measuring galactic magnetic fields:
4. Faraday rotation

Pulsars:
© at known distances: 3D sampling of the Galaxy
© additional info about n, in dispersion measure: DM = | n, ds
© no intrinsic Faraday rotation
® large distance uncertainties
@ mostly in or near Galactic plane

Extragalactic sources:
© evenly distributed over the sky
© many many sources (abt 36000 now) --> “RM grid”
® intrinsic Faraday rotation RM. , ~ 5-10 rad m-
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Measuring galactic magnetic fields:
4. Faraday rotation

o) A
A SO ===

Image credit Marta Alves, in Ferriere (2016)
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Detection methods:

PROCESS: IN COMPONENT:
linear polarization due dust

to dust absorption

polarized dust emission | dust

synchrotron emission

cosmic rays

synchrotron linear
polarization

cosmic rays

Faraday rotation
(linear polarization)

lonized gas

¥ Polarization of

o Wy background
Dy oy S star light
Lrg Ay & P
(]}‘.’ 3 /,:'rl . -
,’U/} - ) < & -
» Polarization of
> || KA™ ¢l R thermal radiation
v E ’ 4 a
Aligned grains = N s %, *
Sy x -y
r 4 ""//' -(~(, - >
Wy Dy .
2% Aligned grains Ik N\ z %
EllB ¥ A

ELB
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How would you search for magnetic fields in:

A supernova remnant?

PROCESS: IN COMPONENT:
linear polarization due dust

to dust absorption

polarized dust emission | dust

synchrotron emission cosmic rays
synchrotron linear cosmic rays
polarization

Faraday rotation lonized gas

(linear polarization)
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5. Strength and Structure of the Galactic magnetic field

Radboud Universiteit $

Marijke Haverkorn -- research school Bad Honnef — 22 Jan 2026




Typical strengths of cosmic magnetic fields:

OBJECT FIELD STRENGTH [Gauss = 104 T]

Magnetars 101> - 1016

Pulsars 10" —10"

Magnetic A-stars 104

Sunspot 2.5x103

Sun 10

Earth 0.6

Supernova remnant 104 —-10"°

Intracluster medium 10° - 10

Interstellar medium 5x 10

Solar Wind at 1 AU 2 x 10

Intergalactic medium < 10-° (random component)
< 10-" (uniform component)
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Interstellar magnetic field configurations

Coherent
RM =0
bﬁum =0
1>=0
Pl=0
YYyvyvy -
{hvdered

RM =0 Anisotropic random

RM =00 Ty =0

Ty =0 i 1=0
=0 PI=0
Pl = () T

‘V’ ..:'.‘f\ \ ~_ VS
N
= 7
P:fﬂ /}5‘ / * ~ Isotropic random
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Large-scale, coherent Galactic magnetic field
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Global Galactic magnetic field models

Heuristic models VS dynamo theory based models
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Next step: non-parametrized inference of magnetic fields

y &
- T .v'..
' -
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- :.»Q
S 4
-3.0 -
B, 1G]

Hutschenreuter et al (2024)
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Coherent Galactic magnetic field:
global variations over the sky

Hutschenreuter et al (2022)

250 ¢gal[rad m 2]
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Coherent Galactic magnetic field:
Toroidal structure

T | : N

.

s

/ Galactic Q|

RM;ot toroidal halo local arm

Unger & Farrar (2023)

Xu & Han (2024)
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Coherent Galactic magnetic field:
MO dipole + M1 quadrupole?

Caroline van Bergen, bachelor thesis Radboud University

Dickey et al (2022)
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\ \a“\ \\\

latitude

WS
Iy i

-60° _75\\ \

longitude
g
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— fit GHBN @& M1 data GHBN ]

409 — fit GHBS ¥ M1 data GHBS
—— fit combined @ M1 data combined

M1 (rad m—2)

RM (rad m—2)

— -6.9 +5.7sin{f+1.79) +15.7 sin[2(£+0.13)]
J —— -2.5 +10.9sin(/+0.10) +22.1 sin[2(£+0.23)]
¢ GMIMS moment 1
¥ ExGal foreground
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Coherent Galactic magnetic field:
MO dipole + M1 quadrupole?

-MO (dipole) -M1 (quadrupole) model

MO dipolar -MO dipolar MO quadrupolar -MO0 quadrupolar

)
'

M1 dipolar -M1 dipolar M1 quadrupolar -M1 quadrupol

MO dipolar M1 dipolar -MO dipolar M1 dipolar MO dipolar -M1 dipolar dipolar -M1 dipolar

MO dipolar M1 quadrupolar -MO dipolar M1 quadrupolar

-MO dipolar -M1 quadrupolar

MO dipolar -M1 quadrupolar

MO quadrupolarM1 dipolar -MO quadrupolarM1 dipolar MO quadrupolar-M1 dipolar -MO quadrupolar-M1 dipolar D i Ck ey et al ( 2 0 22 )
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Coherent Galactic magnetic field:
Or just an in-your-face foreground structure?

I'= 34{'}“ f R\%‘l = 45" a

LOCAL BUBBLE

Wolleben et al (2010)

Radboud Universiteit %

c
1, A7
MineE©

Marijke Haverkorn -- research school Bad Honnef — 22 Jan 2026



Magnetic arms in between spiral arms?
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Deviations from ‘simple’ spiral arms
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Deviations from ‘simple’ spiral arms
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Small-scale turbulent magnetic fields
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Small-scale structure correlates with the ISM
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Magnetic field correlations:
starlight polarization with dust polarization
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Optical/near-infrared starlight polarization gives interstellar
maghnetic field in 3 spatial dimensions
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Magnetic field correlations:
starlight polarization with with neutral gas filaments
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Magnetic field correlations:
dust polarization with LOFAR Faraday depth filaments

Jeli¢ et al (2018)
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Tracing the Local Bubble

O’Neill et al (2024)
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Conclusions

Energy densities of thermal gas, turbulent gas, cosmic rays and interstellar
magnetic field are comparable - all components are dynamically important and
give feedback on each other.

Interstellar magnetic field important in driving gas dynamics, influencing star
formation, dictating cosmic-ray propagation and diffusion, etc.

Magnetic fields are created (by some mechanism) in the early Universe, and
are amplified and maintained by a dynamo process.

Large-scale Galactic magnetic field runs along spiral arms but also has a
poloidal component; models get more complex, but cannot include observed
deviations from spiral structure.

Small-scale interstellar magnetic field is intermittent, anisotropic turbulent;
field orientations often correlate with dust and hydrogen gas filaments.
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