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Introduction / Machine Learning



Machine Learning

AI

Machine Learning

Deep

Learning

Machine learning data model fit= ◦ ◦Machine learning data model fit= ◦ ◦
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Supervised Learning

Target: any quantity Y we want to predict (costly or impossible to measure)

Feature: any quantity Xi we compute from observable quantities

Training Data: D =
{

(xi, yi) ∈ X × Y : 1 ≤ i ≤ m
}

Y X1 X2
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Structured data:

tabular representation

Xi facilitate the prediction of Y ,

e.g., through well-designed preprocessing
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Structured Data

df = fact.io.read_data( # pandas.DataFrame
"gamma_simulations_facttools_dl2.hdf5",
key = "events"

)

X = df[[ # select features
"length", # -> shape (n_events, n_features)
"width",
"num_islands",
"num_pixel_in_shower",
# ...

]].to_numpy()

y = df["corsika_event_header_total_energy"]

clf = sklearn.ensemble.RandomForestClassifier()
clf.fit(X, y)
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Structured Data

x1

x2

.

.

.

xd

( ) β1x1

β2x2
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βdxd

∑
−4−224
0.20.40.60.811.21.4

Logistic Regression:

P̂β(Y = +1 | X = x) = e〈β,x〉

1 + e〈β,x〉

Y
=

+
1Y = −1

−1 +
1

X1

X2

x1 > .7

x2 > .4

x1 > .5

+

-

- +

Decision Trees:

recursively split X

boost performance through ensembling

These models perform very well
(
if structure permits

)
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Unstructured Data
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graphic de-

sign, Lorem

ipsum is

images time series texts graphs

Deep Learning learns features as a part of the model

no manual feature-engineering necessary

instead, architecture optimization and more data are needed
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Agenda

Machine learning data model fit= ◦ ◦Machine learning data model fit= ◦ ◦

assumptions

1. 2.3.

1. Modeling

2. Fitting

3. Data and Assumptions

4. Concluding Remarks

+ Hands-On Exercises (Tue ~ 45 min, Thu ~ 90 min)
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Modeling



Shallow Models

Polynomial Regression: y = fβ(x) + ε, where fβ(x) =
n∑

i=0

〈βi, xi〉

y ∈ R, x ∈ Rd, and βi ∈ Rd

〈a, b〉 =
∑d

j=1 aj · bj is the scalar product

typical loss: LD(β) =
∑m

i=1

(
yi − fβ(xi)

)2
where (xi, yi) ∈ D

and D = {(xi, yi) ∈ X × Y : 1 ≤ i ≤ m} is the training set
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Shallow Models

Logistic Regression: ŷ = arg max
i∈{1,2,...,C}

P̂β(Y = i | X = x)

where ρ(vi) =


1
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e
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e

vj
i ∈ {2, 3, . . . , C}

x

0

〈β2, x〉

〈β3, x〉
.
.
.

〈βC , x〉

p1

p2

p3

.

.

.

pC

( )
ρ

in
p
u
t

lo
g
-
o
d
d
s

p
ro
b
a
b
il
it
ie
s

The soft-max operation ρ projects to the unit simplex
{

p ∈ RC : pi ≥ 0, 1 =
∑C

i=1 pi

}
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Shallow Models

Motivation: the Logistic Regression represents linear models of the log-odds.

log P(Y = 2 | X = x)
P(Y = 1 | X = x) = 〈β2, x〉+ ε

?
> 0

log P(Y = 3 | X = x)
P(Y = 1 | X = x) = 〈β3, x〉+ ε

?
> 0

. . .

log P(Y = k | X = x)
P(Y = 1 | X = x) = 〈βC , x〉+ ε

?
> 0
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Shallow Models

Synopsis:

Polynomial Regression =

a linear model of exponentiated inputs xi

Logistic Regression =

a linear model of the log-odds

The soft-max operation maps these log-odds

to (estimates of) class probabilities
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Deep Networks

Deep Nets: use multiple (logistic regression-like) layers

learnable linear combinations 〈β, •〉

non-linear activations σ

−1 1
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Universal Approximation

Density: A family G of models can approximate any function f ∈ C(Rn),
if ∀ ε > 0, compact K ⊆ Rn, ∃ g ∈ G, such that

max
x∈K

∥∥f(x)− g(x)
∥∥ < ε

One hidden layer of arbitrary width is dense iff σ is non-polynomial.1

Arbitrarily deep nets with minimum width d + C + 2 are dense.2

Deep nets are often more efficient approximators than wide shallow nets.

Density does not imply the existence of a learning algorithm to select g from G

1 Pinkus, “Approximation theory of the MLP model in neural networks”, 1999.
2 Kidger and Lyons, “Universal approximation with deep narrow networks”, 2020.
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Over- and Underfitting

model capacity

p
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d
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testing
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interpolation

threshold

d
o
u
b
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d
e
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c
e
n
t

Under-Fitting:

approximation

high bias, low variance

Over-Fitting:

memorization

low bias, high variance

Double Descent:

interpolation3

3 Belkin et al., “Reconciling modern machine-learning practice and the classical bias-variance trade-off”, 2019
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Inductive Biases

Convolution: S(i, j) = (K ∗ I)(i, j) =
∑
m, n

I(i−m, j − n) ·K(m, n)

Pooling: only maintain the maximum of each neighborhood.

translation invariance

sparse interactions

parameter sharing

la
ye
r
i −

1

la
ye
r
i

i +
1

In general, specialized layers are used to introduce biases that suit the data.
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Inductive Biases

Attention(X1, X2) = σ
(
(X1WQ)(X2WK)>)

X2WV explicitly models interactions.

Attention Block

Attention

X1

X2

WQ

WK

WV

σ(·)

s
×

i

s
×

o

+ +FF

s
×

i

s
×

o
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Modeling

Synopsis:

Deep Nets use layers of increasingly abstract representations

Layers consist of linear parameters and non-linear activations

Model Capacity should consider sample sizes (over-/under-fitting)

Inductive Biases facilitate learning

Practical Recommendations:

Build on Existing Solutions for similar problems

Extensively Tune the hyper-parameters (# layers, # features per layer, …)

Assumptions > Depth hence, prioritize baseline methods
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Fitting



Empirical Risk Minimization

Notation:

hβ : X → RC is our model, parametrized by β ∈ RB (fixed architecture)

`(hβ(x), y) measures the deviation between hβ(x) and y

Ultimate Goal: minimize the expected risk:

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
=

∫
X ×Y

P
(
X = x, Y = y

)
· `

(
hβ(x), y

)
dx dy

Approach: approximate R(hβ , `) empirically with the training data D:

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)
−−−−→
m→∞

R(hβ , `)

and choose β∗ = arg minβ∈RB R̂D(hβ , `).
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Loss Functions

Mean Squared Error: `
(
h(x), y

)
=

∥∥h(x)− y
∥∥2

2

Cross Entropy / Logistic Loss: `′(h(x), y
)

= −
C∑

i=1

δy=i log
(
[h(x)]i

)

Proper Scoring Rule: any ` : Z × Y → R for which arg minh∈H R(h; `) = P(Y | X).

cross entropy is proven to be such a loss function

hence, ERM with cross entropy readily learns P(Y | X)
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Empirical Risk Minimization (Revisited)

Ultimate Goal: minimize the expected risk:

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
ERM: approximate R(hβ , `) empirically with the training data D:

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)
−−−−→
m→∞

R(hβ , `)

and choose β∗ = arg minβ∈RB R̂D(hβ , `).
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Stochastic First-Order Optimization

Ideas:

R̂D(hβ , `) is just a function to be

minimized

use gradient information to reduce

R̂D(hβ , `) until β∗ is found.

ignore higher-order derivatives to

safe computation time.

introduce randomness into the

gradients to improve convergence.

β

R̂D

R̂D

R̂D(β(k))

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 24



Stochastic First-Order Optimization

Ideas:

R̂D(hβ , `) is just a function to be

minimized

use gradient information to reduce

R̂D(hβ , `) until β∗ is found.

ignore higher-order derivatives to

safe computation time.

introduce randomness into the

gradients to improve convergence.

β

R̂D

R̂D

R̂D(β(k))
∇βR̂D(β(k))
∇2

βR̂D(β(k))

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 24



Stochastic First-Order Optimization

Ideas:

R̂D(hβ , `) is just a function to be

minimized

use gradient information to reduce

R̂D(hβ , `) until β∗ is found.

ignore higher-order derivatives to

safe computation time.

introduce randomness into the

gradients to improve convergence.
β

R̂D

R̂D

R̂D(β(k))
∇βR̂D(β(k))
∇2

βR̂D(β(k))

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 24



Stochastic First-Order Optimization

Stochastic Gradient Descent (SGD): in each step k, reduce the risk R̂D(hβ , `)
w.r.t. a single, random example.

β(k+1) ← β(k) − α(k)∇β `
(

h
(
xi(k) , β(k)), yi(k)

)
where


β(k) the parameter vector of h

α(k) the step size

(xi(k) , yi(k) ) the example

Full Gradient Descent (GD): in each step k, reduce R̂D(hβ , `) w.r.t. all examples.

β(k+1) ← β(k) − α(k)∇β R̂D(hβ , `) = β(k) − α(k) 1
m

m∑
i=1

∇β`
(

h
(
xi, β(k)), yi

)

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 25



Stochastic First-Order Optimization

Stochastic Gradient Descent (SGD): in each step k, reduce the risk R̂D(hβ , `)
w.r.t. a single, random example.

β(k+1) ← β(k) − α(k)∇β `
(

h
(
xi(k) , β(k)), yi(k)

)
where


β(k) the parameter vector of h

α(k) the step size

(xi(k) , yi(k) ) the example

Full Gradient Descent (GD): in each step k, reduce R̂D(hβ , `) w.r.t. all examples.

β(k+1) ← β(k) − α(k)∇β R̂D(hβ , `) = β(k) − α(k) 1
m

m∑
i=1

∇β`
(

h
(
xi, β(k)), yi

)

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 25



Stochastic First-Order Optimization

Convergence Rate4: worst-case # iterations, in which R̂D(hβ , `) ≤ R̂D(hβ∗ , `) + ε

GD: ∝ m · log( 1
ε
)

SGD: ∝ 1
ε

(independent of m)

For SGD, the same rate applies to R(hβ , `) (independent of D if m� k)

Hence, SGD has an amazing performance for large data sets.

4 Bottou, Curtis, and Nocedal, “Optimization Methods for Large-Scale Machine Learning”, 2018.
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Stochastic First-Order Optimization

Noise Reduction: use mini-batches instead of single examples,

β(k+1) ← β(k) − α(k) 1
b

b∑
i=1

∇β`
(

h
(
xbi , β(k)), ybi

)
. where b� m.

smaller variance of update steps

stepsize {α(k)} is easier to tune

most common approach for deep nets

Learning Rate Scheduling:

even with mini-batches, noise can eventually prevent the reduction of R̂D(hβ , `)

hence, decrease step sizes {α(k)} over time
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Stochastic First-Order Optimization

Momentum:

β(k+1) ← β(k) − g
(
β(k)) + γ(k) ·

(
β(k) − β(k−1))

where

{
g(β(k)) SGD, GD, or mini-batch gradient

γ(k) a weighting parameter

Accelerated Gradient a.k.a. Nesterov Momentum:

β(k+1) ← β(k) − g
(
β(k) + γ(k) ·

(
β(k) − β(k−1)))

+ γ(k) ·
(
β(k) − β(k−1))

momentum is applied before g(•)

GD: optimal convergence rate ∝ 1
ε2

SGD: good practical performance but (theoretical) convergence rate is not improved

even better: if combined with adaptive gradients → Adam
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Backpropagation

Goal: compute ∇β`(h(xi, β), yi) where

h(xi, β) = ρ
(〈

βd, φ
(
〈βd−1, . . . φ(〈β1, xi〉) 〉

) 〉)
x σ(〈β1, x〉) σ(〈β2, •〉) ρ(〈βd, •〉) h(x). . .

Chain rule of calculus:
∂f(g(x))

∂x
= ∂f(g)

∂g

∂g(x)
∂x

Automatic Differentiation: each function f(x) also implements its gradient

∇xf(x) = (∂f(x)
∂x1

, . . .
∂f(x)
∂xn

)>
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Deep Networks

Deep Nets: use multiple (logistic regression-like) layers

learnable linear combinations 〈β, •〉

non-linear activations σ

−1 1
−1

1

〈β, •〉

σ
max(0, •)

tanh(•)

x

σ(〈β1,1, x〉)

σ(〈β1,2, x〉)
.
.
.

σ(〈β1,w, x〉)

σ(〈β2,1, •〉)

σ(〈β2,2, •〉)
.
.
.

σ(〈β2,w′ , •〉)

〈βd,1, •〉

〈βd,2, •〉
.
.
.

〈βd,w′′ , •〉

p1

p2
.
.
.

pC

( )
. . .
. . .

. . .

ρin
p
u
t h
id
d
e
n
la
y
e
r
1
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id
d
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r
2
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Stochastic First-Order Optimization

Synopsis:

ERM: we minimize R̂D(hβ , `) −−−−→
m→∞

R(hβ , `)

SGD: gradients randomized through sampling converge quickly for large m

Mini-Batching: common practice to reduce SGD gradient noise

LR Scheduling: common practice to balance the noise

Nesterov Momentum: can improve convergence

Practical Recommendations:

Carefully Design Loss Functions to reflect your goals

Use Popular First-Order Methods like Adam or SGD with Nesterov Momentum
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Data and Assumptions



A Premature Conclusion

Machine learning data model fit= ◦ ◦Machine learning data model fit= ◦ ◦

What we have learned:

Deep Nets are universal function approximators

Customized loss functions let them learn what we need

We know effective ways of optimizing them

What could possibly go wrong?
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Learning Assumptions

Recall that we approximate

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
through

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)

Independent and Identical Distribution (IID) Assumption:

(x, y) ∼ P ∀ (x, y) ∈ D ∪Dtest

Data Set Shift breaks the IID assumption

D ∼ PS (e.g., a simulation)

Dtest ∼ PT (e.g., a real detector)

PS 6= PT
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Types of Data Set Shift5

Recognize that P(X, Y ) = P(X | Y ) · P(Y )

= P(X) · P(Y | X)

Label Shift:

PS(X | Y ) = PT (X | Y )

PS(Y ) 6= PT (Y )

Concept Shift:

PS(Y ) = PT (Y )

PS(X | Y ) 6= PT (X | Y )

(Also) Concept Shift:

PS(X) = PT (X)

PS(Y | X) 6= PT (Y | X)

Covariate Shift:

PS(Y | X) = PT (Y | X)

PS(X) 6= PT (X)

Correction Methods are available for each type, but require extra information

(additional data, more assumptions, …)

5 Kull and Flach, “Patterns of dataset shift”, 2014
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Domain-Adversarial Unsupervised Domain Adaptation6

Assume Concept Shift PS(X | Y ) 6= PT (X | Y ) and PS(Y ) = PT (Y )

Employ Unlabeled Data DT =
{

x ∼ PT (X)
}

x

la
y
e
r
1

la
y
e
r
2

la
y
e
r

n

…

n
+

1

n
+

2

y…

d
o
m
a
in

1

d
o
m
a
in

2

d =

{
1 if x ∈ DT

0 if (x, y) ∈ D
−∇

β RD
…

6 Ganin et al., “Domain-Adversarial Training of Neural Networks”, 2016
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Domain-Adversarial Unsupervised Domain Adaptation6

Assume Concept Shift PS(X | Y ) 6= PT (X | Y ) and PS(Y ) = PT (Y )

Employ Unlabeled Data DT =
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Class-Conditional Label Noise7

Label Noise:

Training Labels ŷ are randomly flipped versions of the ground-truth y

Assumptions about the flipping process y → ŷ are required

Class-Conditional Noise: P(Y = +1 | X = x) = a · P(Ŷ = +1 | X = x) + b

+

−

+̂

−̂

1 − p+
p+

p−
1 − p−

y ŷ

7 Menon et al., “Learning from Corrupted Binary Labels via Class-Probability Estimation”, 2015
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Deep Sets8

Each instance is a set {xi ∈ X : 1 ≤ i ≤ m} of variable size m

Y are properties of such sets

xi

in
s
ta
n
c
e
la
y
e
r
1

in
s
ta
n
c
e
la
y
e
r
2

in
s
ta
n
c
e
la
y
e
r

n

…

φ

s
e
t
la
y
e
r

1

s
e
t
la
y
e
r

2

y = ρ
( ∑m

i
φ(xi)

)m∑
i

φ(xi) …

ρ

8 Zaheer et al., “Deep sets”, 2017
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Set Transformers9

Attention Block

SAB
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Self-Attention Block:

X

I
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B
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Pooling by Attention:

SAB ◦ … ◦ SAB ◦ PASet Encoder:

9 Lee et al., “Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks”, 2019
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Concluding Remarks



Should I Use Neural Networks?

Architecture Search vs feature engineering

Scale great for big data (but not for small data)

GPUs required as well as computation time for fitting
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Implementing Neural Networks

JAX, PyTorch, Tensorflow, or Keras?

Keras, Tensorflow: established solutions

PyTorch, JAX: maximum flexibility

JAX:

JIT compilation speedups

API identical to Numpy/Scipy

Clean functional programming style (clarity, separation of concerns)

Evolving eco-system and fewer solutions
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Agenda

Machine learning data model fit= ◦ ◦Machine learning data model fit= ◦ ◦

assumptions

1. 2.3.

1. Modeling

2. Fitting

3. Data and Assumptions

4. Concluding Remarks

+ Hands-On Exercises (Tue ~ 45 min, Thu ~ 90 min)
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Hands-On Exercises

https:
//git.e5.physik.tu-dortmund.de/qfuehring/ml_intro_handson

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 44

https://git.e5.physik.tu-dortmund.de/qfuehring/ml_intro_handson
https://git.e5.physik.tu-dortmund.de/qfuehring/ml_intro_handson

	Introduction / Machine Learning
	Modeling
	Fitting
	Data and Assumptions
	Concluding Remarks

