
Deep Learning
An Introduction

Mirko Bunse, Quentin Führing, and Vukan Jevtic

Grad School on Astro-Particle Physics (Jan 18th–23rd, 2026)

Further Reading

Goodfellow, Bengio, and Courville, Deep Learning, 2016:

principled and rigorous approach

great technical coverage

Bishop and Bishop, Deep Learning - Foundations and Concepts, 2024:

even more basics

more advanced topics, like transformers

Erdmann et al., Deep Learning for Physics Research, 2021:

physics-oriented examples and exercises

(some) coverage of uncertainties and custom loss functions

Lippe, UvA Deep Learning Tutorials, 2023:

https://uvadlc-notebooks.readthedocs.io

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 1

https://uvadlc-notebooks.readthedocs.io

Further Reading

Goodfellow, Bengio, and Courville, Deep Learning, 2016:

principled and rigorous approach

great technical coverage

Bishop and Bishop, Deep Learning - Foundations and Concepts, 2024:

even more basics

more advanced topics, like transformers

Erdmann et al., Deep Learning for Physics Research, 2021:

physics-oriented examples and exercises

(some) coverage of uncertainties and custom loss functions

Lippe, UvA Deep Learning Tutorials, 2023:

https://uvadlc-notebooks.readthedocs.io

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 1

https://uvadlc-notebooks.readthedocs.io

Further Reading

Goodfellow, Bengio, and Courville, Deep Learning, 2016:

principled and rigorous approach

great technical coverage

Bishop and Bishop, Deep Learning - Foundations and Concepts, 2024:

even more basics

more advanced topics, like transformers

Erdmann et al., Deep Learning for Physics Research, 2021:

physics-oriented examples and exercises

(some) coverage of uncertainties and custom loss functions

Lippe, UvA Deep Learning Tutorials, 2023:

https://uvadlc-notebooks.readthedocs.io

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 1

https://uvadlc-notebooks.readthedocs.io

Further Reading

Goodfellow, Bengio, and Courville, Deep Learning, 2016:

principled and rigorous approach

great technical coverage

Bishop and Bishop, Deep Learning - Foundations and Concepts, 2024:

even more basics

more advanced topics, like transformers

Erdmann et al., Deep Learning for Physics Research, 2021:

physics-oriented examples and exercises

(some) coverage of uncertainties and custom loss functions

Lippe, UvA Deep Learning Tutorials, 2023:

https://uvadlc-notebooks.readthedocs.io

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 1

https://uvadlc-notebooks.readthedocs.io

Introduction / Machine Learning

Machine Learning

AI

Machine Learning

Deep

Learning

Machine learning data model fit= ◦ ◦Machine learning data model fit= ◦ ◦

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 3

Machine Learning

AI

Machine Learning

Deep

Learning

Machine learning data model fit= ◦ ◦Machine learning data model fit= ◦ ◦

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 3

Supervised Learning

Target: any quantity Y we want to predict (costly or impossible to measure)

Feature: any quantity Xi we compute from observable quantities

Training Data: D =
{

(xi, yi) ∈ X × Y : 1 ≤ i ≤ m
}

Y X1 X2

. . .

.

.

.
. . .

+1 1.3 A

-1 -0.2 B

+1 0.8 A

ta
rg
e
t

fe
a
tu
re

fe
a
tu
re

Structured data:

tabular representation

Xi facilitate the prediction of Y ,

e.g., through well-designed preprocessing

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 4

Supervised Learning

Target: any quantity Y we want to predict (costly or impossible to measure)

Feature: any quantity Xi we compute from observable quantities

Training Data: D =
{

(xi, yi) ∈ X × Y : 1 ≤ i ≤ m
}

Y X1 X2

. . .

.

.

.
. . .

+1 1.3 A

-1 -0.2 B

+1 0.8 A

ta
rg
e
t

fe
a
tu
re

fe
a
tu
re

Structured data:

tabular representation

Xi facilitate the prediction of Y ,

e.g., through well-designed preprocessing

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 4

Structured Data

df = fact.io.read_data(# pandas.DataFrame
"gamma_simulations_facttools_dl2.hdf5",
key = "events"

)

X = df[[# select features
"length", # -> shape (n_events, n_features)
"width",
"num_islands",
"num_pixel_in_shower",
...

]].to_numpy()

y = df["corsika_event_header_total_energy"]

clf = sklearn.ensemble.RandomForestClassifier()
clf.fit(X, y)

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 5

Structured Data

x1

x2

.

.

.

xd

() β1x1

β2x2

.

.

.

βdxd

∑
−4−224
0.20.40.60.811.21.4

Logistic Regression:

P̂β(Y = +1 | X = x) = e〈β,x〉

1 + e〈β,x〉

Y
=

+
1Y = −1

−1 +
1

X1

X2

x1 > .7

x2 > .4

x1 > .5

+

-

- +

Decision Trees:

recursively split X

boost performance through ensembling

These models perform very well
(
if structure permits

)

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 6

Structured Data

x1

x2

.

.

.

xd

() β1x1

β2x2

.

.

.

βdxd

∑
−4−224
0.20.40.60.811.21.4

Logistic Regression:

P̂β(Y = +1 | X = x) = e〈β,x〉

1 + e〈β,x〉
Y

=
+

1Y = −1

−1 +
1

X1

X2

x1 > .7

x2 > .4

x1 > .5

+

-

- +

Decision Trees:

recursively split X

boost performance through ensembling

These models perform very well
(
if structure permits

)
M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 6

Unstructured Data

0.2 0.4 0.6 0.8

0.2
0.4
0.6
0.8

1

t

demonstrate

the visual

form of a

document

a place-

holder text

holder text

commonly

used to

In pub-

lishing and

graphic de-

sign, Lorem

ipsum is

images time series texts graphs

Deep Learning learns features as a part of the model

no manual feature-engineering necessary

instead, architecture optimization and more data are needed

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 7

Unstructured Data

0.2 0.4 0.6 0.8

0.2
0.4
0.6
0.8

1

t

demonstrate

the visual

form of a

document

a place-

holder text

holder text

commonly

used to

In pub-

lishing and

graphic de-

sign, Lorem

ipsum is

images time series texts graphs

Deep Learning learns features as a part of the model

no manual feature-engineering necessary

instead, architecture optimization and more data are needed

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 7

Agenda

Machine learning data model fit= ◦ ◦Machine learning data model fit= ◦ ◦

assumptions

1. 2.3.

1. Modeling

2. Fitting

3. Data and Assumptions

4. Concluding Remarks

+ Hands-On Exercises (Tue ~ 45 min, Thu ~ 90 min)

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 8

Modeling

Shallow Models

Polynomial Regression: y = fβ(x) + ε, where fβ(x) =
n∑

i=0

〈βi, xi〉

y ∈ R, x ∈ Rd, and βi ∈ Rd

〈a, b〉 =
∑d

j=1 aj · bj is the scalar product

typical loss: LD(β) =
∑m

i=1

(
yi − fβ(xi)

)2
where (xi, yi) ∈ D

and D = {(xi, yi) ∈ X × Y : 1 ≤ i ≤ m} is the training set

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 10

Shallow Models

Polynomial Regression: y = fβ(x) + ε, where fβ(x) =
n∑

i=0

〈βi, xi〉

y ∈ R, x ∈ Rd, and βi ∈ Rd

〈a, b〉 =
∑d

j=1 aj · bj is the scalar product

typical loss: LD(β) =
∑m

i=1

(
yi − fβ(xi)

)2
where (xi, yi) ∈ D

and D = {(xi, yi) ∈ X × Y : 1 ≤ i ≤ m} is the training set

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 10

Shallow Models

Logistic Regression: ŷ = arg max
i∈{1,2,...,C}

P̂β(Y = i | X = x)

where ρ(vi) =


1

1+
∑k

j=2
e

vj
i = 1

evi

1+
∑k

j=2
e

vj
i ∈ {2, 3, . . . , C}

x

0

〈β2, x〉

〈β3, x〉
.
.
.

〈βC , x〉

p1

p2

p3

.

.

.

pC

()
ρ

in
p
u
t

lo
g
-
o
d
d
s

p
ro
b
a
b
il
it
ie
s

The soft-max operation ρ projects to the unit simplex
{

p ∈ RC : pi ≥ 0, 1 =
∑C

i=1 pi

}

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 11

Shallow Models

Logistic Regression: ŷ = arg max
i∈{1,2,...,C}

P̂β(Y = i | X = x)︸ ︷︷ ︸
= ρ(〈βi,x〉)

where ρ(vi) =


1

1+
∑k

j=2
e

vj
i = 1

evi

1+
∑k

j=2
e

vj
i ∈ {2, 3, . . . , C}

x

0

〈β2, x〉

〈β3, x〉
.
.
.

〈βC , x〉

p1

p2

p3

.

.

.

pC

()
ρ

in
p
u
t

lo
g
-
o
d
d
s

p
ro
b
a
b
il
it
ie
s

The soft-max operation ρ projects to the unit simplex
{

p ∈ RC : pi ≥ 0, 1 =
∑C

i=1 pi

}

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 11

Shallow Models

Logistic Regression: ŷ = arg max
i∈{1,2,...,C}

P̂β(Y = i | X = x)︸ ︷︷ ︸
= ρ(〈βi,x〉)

where ρ(vi) =


1

1+
∑k

j=2
e

vj
i = 1

evi

1+
∑k

j=2
e

vj
i ∈ {2, 3, . . . , C}

x

0

〈β2, x〉

〈β3, x〉
.
.
.

〈βC , x〉

p1

p2

p3

.

.

.

pC

()
ρ

in
p
u
t

lo
g
-
o
d
d
s

p
ro
b
a
b
il
it
ie
s

The soft-max operation ρ projects to the unit simplex
{

p ∈ RC : pi ≥ 0, 1 =
∑C

i=1 pi

}
M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 11

Shallow Models

Motivation: the Logistic Regression represents linear models of the log-odds.

log P(Y = 2 | X = x)
P(Y = 1 | X = x) = 〈β2, x〉+ ε

?
> 0

log P(Y = 3 | X = x)
P(Y = 1 | X = x) = 〈β3, x〉+ ε

?
> 0

. . .

log P(Y = k | X = x)
P(Y = 1 | X = x) = 〈βC , x〉+ ε

?
> 0

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 12

Shallow Models

Synopsis:

Polynomial Regression =

a linear model of exponentiated inputs xi

Logistic Regression =

a linear model of the log-odds

The soft-max operation maps these log-odds

to (estimates of) class probabilities

x

0

〈β2, x〉

〈β3, x〉
.
.
.

〈βC , x〉

p1

p2

p3

.

.

.

pC

()
ρ

in
p
u
t

lo
g
-
o
d
d
s

p
ro
b
a
b
il
it
ie
s

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 13

Deep Networks

Deep Nets: use multiple (logistic regression-like) layers

learnable linear combinations 〈β, •〉

non-linear activations σ

−1 1
−1

1

〈β, •〉

σ
max(0, •)

tanh(•)

x

〈β1,1, x〉

〈β1,2, x〉
.
.
.

〈β1,w, x〉

〈β2,1, •〉

〈β2,2, •〉
.
.
.

〈β2,w′ , •〉

〈βd,1, •〉

〈βd,2, •〉
.
.
.

〈βd,w′′ , •〉

p1

p2
.
.
.

pC

()
. . .
. . .

. . .

ρin
p
u
t h
id
d
e
n
la
y
e
r
1

h
id
d
e
n
la
y
e
r
2

lo
g
-
o
d
d
s

p
ro
b
a
b
il
it
ie
s

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 14

Deep Networks

Deep Nets: use multiple (logistic regression-like) layers

learnable linear combinations 〈β, •〉

non-linear activations σ

−1 1
−1

1

〈β, •〉

σ
max(0, •)

tanh(•)

x

σ(〈β1,1, x〉)

σ(〈β1,2, x〉)
.
.
.

σ(〈β1,w, x〉)

σ(〈β2,1, •〉)

σ(〈β2,2, •〉)
.
.
.

σ(〈β2,w′ , •〉)

〈βd,1, •〉

〈βd,2, •〉
.
.
.

〈βd,w′′ , •〉

p1

p2
.
.
.

pC

()
. . .
. . .

. . .

ρin
p
u
t h
id
d
e
n
la
y
e
r
1

h
id
d
e
n
la
y
e
r
2

lo
g
-
o
d
d
s

p
ro
b
a
b
il
it
ie
s

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 14

Universal Approximation

Density: A family G of models can approximate any function f ∈ C(Rn),
if ∀ ε > 0, compact K ⊆ Rn, ∃ g ∈ G, such that

max
x∈K

∥∥f(x)− g(x)
∥∥ < ε

One hidden layer of arbitrary width is dense iff σ is non-polynomial.1

Arbitrarily deep nets with minimum width d + C + 2 are dense.2

Deep nets are often more efficient approximators than wide shallow nets.

Density does not imply the existence of a learning algorithm to select g from G

1 Pinkus, “Approximation theory of the MLP model in neural networks”, 1999.
2 Kidger and Lyons, “Universal approximation with deep narrow networks”, 2020.

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 15

Universal Approximation

Density: A family G of models can approximate any function f ∈ C(Rn),
if ∀ ε > 0, compact K ⊆ Rn, ∃ g ∈ G, such that

max
x∈K

∥∥f(x)− g(x)
∥∥ < ε

One hidden layer of arbitrary width is dense iff σ is non-polynomial.1

Arbitrarily deep nets with minimum width d + C + 2 are dense.2

Deep nets are often more efficient approximators than wide shallow nets.

Density does not imply the existence of a learning algorithm to select g from G

1 Pinkus, “Approximation theory of the MLP model in neural networks”, 1999.
2 Kidger and Lyons, “Universal approximation with deep narrow networks”, 2020.

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 15

Universal Approximation

Density: A family G of models can approximate any function f ∈ C(Rn),
if ∀ ε > 0, compact K ⊆ Rn, ∃ g ∈ G, such that

max
x∈K

∥∥f(x)− g(x)
∥∥ < ε

One hidden layer of arbitrary width is dense iff σ is non-polynomial.1

Arbitrarily deep nets with minimum width d + C + 2 are dense.2

Deep nets are often more efficient approximators than wide shallow nets.

Density does not imply the existence of a learning algorithm to select g from G

1 Pinkus, “Approximation theory of the MLP model in neural networks”, 1999.
2 Kidger and Lyons, “Universal approximation with deep narrow networks”, 2020.

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 15

Over- and Underfitting

model capacity

p
re
d
ic
ti
o
n
e
rr
o
r

testing

training

u
n
d
e
r-
fi
tt
in
g

o
v
e
r-
fi
tt
in
g

interpolation

threshold

d
o
u
b
le

d
e
s
c
e
n
t

Under-Fitting:

approximation

high bias, low variance

Over-Fitting:

memorization

low bias, high variance

Double Descent:

interpolation3

3 Belkin et al., “Reconciling modern machine-learning practice and the classical bias-variance trade-off”, 2019

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 16

Over- and Underfitting

model capacity

p
re
d
ic
ti
o
n
e
rr
o
r

testing

training

u
n
d
e
r-
fi
tt
in
g

o
v
e
r-
fi
tt
in
g

interpolation

threshold

d
o
u
b
le

d
e
s
c
e
n
t

Under-Fitting:

approximation

high bias, low variance

Over-Fitting:

memorization

low bias, high variance

Double Descent:

interpolation3

3 Belkin et al., “Reconciling modern machine-learning practice and the classical bias-variance trade-off”, 2019

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 16

Inductive Biases

Convolution: S(i, j) = (K ∗ I)(i, j) =
∑
m, n

I(i−m, j − n) ·K(m, n)

Pooling: only maintain the maximum of each neighborhood.

translation invariance

sparse interactions

parameter sharing

la
ye
r
i −

1

la
ye
r
i

i +
1

In general, specialized layers are used to introduce biases that suit the data.

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 17

Inductive Biases

Convolution: S(i, j) = (K ∗ I)(i, j) =
∑
m, n

I(i−m, j − n) ·K(m, n)

Pooling: only maintain the maximum of each neighborhood.

translation invariance

sparse interactions

parameter sharing

la
ye
r
i −

1

la
ye
r
i

i +
1

In general, specialized layers are used to introduce biases that suit the data.

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 17

Inductive Biases

Convolution: S(i, j) = (K ∗ I)(i, j) =
∑
m, n

I(i−m, j − n) ·K(m, n)

Pooling: only maintain the maximum of each neighborhood.

translation invariance

sparse interactions

parameter sharing

la
ye
r
i −

1

la
ye
r
i

i +
1

In general, specialized layers are used to introduce biases that suit the data.

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 17

Inductive Biases

Convolution: S(i, j) = (K ∗ I)(i, j) =
∑
m, n

I(i−m, j − n) ·K(m, n)

Pooling: only maintain the maximum of each neighborhood.

translation invariance

sparse interactions

parameter sharing

la
ye
r
i −

1

la
ye
r
i

i +
1

In general, specialized layers are used to introduce biases that suit the data.

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 17

Inductive Biases

Convolution: S(i, j) = (K ∗ I)(i, j) =
∑
m, n

I(i−m, j − n) ·K(m, n)

Pooling: only maintain the maximum of each neighborhood.

translation invariance

sparse interactions

parameter sharing

la
ye
r
i −

1

la
ye
r
i

i +
1

In general, specialized layers are used to introduce biases that suit the data.

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 17

Inductive Biases

Attention(X1, X2) = σ
(
(X1WQ)(X2WK)>)

X2WV explicitly models interactions.

Attention Block

Attention

X1

X2

WQ

WK

WV

σ(·)

s
×

i

s
×

o

+ +FF

s
×

i

s
×

o

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 18

Inductive Biases

Attention(X1, X2) = σ
(
(X1WQ)(X2WK)>)

X2WV explicitly models interactions.

Attention Block

Attention

X1

X2

WQ

WK

WV

σ(·)

s
×

i

s
×

o

+ +FF

s
×

i

s
×

o

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 18

Modeling

Synopsis:

Deep Nets use layers of increasingly abstract representations

Layers consist of linear parameters and non-linear activations

Model Capacity should consider sample sizes (over-/under-fitting)

Inductive Biases facilitate learning

Practical Recommendations:

Build on Existing Solutions for similar problems

Extensively Tune the hyper-parameters (# layers, # features per layer, …)

Assumptions > Depth hence, prioritize baseline methods

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 19

Modeling

Synopsis:

Deep Nets use layers of increasingly abstract representations

Layers consist of linear parameters and non-linear activations

Model Capacity should consider sample sizes (over-/under-fitting)

Inductive Biases facilitate learning

Practical Recommendations:

Build on Existing Solutions for similar problems

Extensively Tune the hyper-parameters (# layers, # features per layer, …)

Assumptions > Depth hence, prioritize baseline methods

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 19

Modeling

Synopsis:

Deep Nets use layers of increasingly abstract representations

Layers consist of linear parameters and non-linear activations

Model Capacity should consider sample sizes (over-/under-fitting)

Inductive Biases facilitate learning

Practical Recommendations:

Build on Existing Solutions for similar problems

Extensively Tune the hyper-parameters (# layers, # features per layer, …)

Assumptions > Depth hence, prioritize baseline methods

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 19

Modeling

Synopsis:

Deep Nets use layers of increasingly abstract representations

Layers consist of linear parameters and non-linear activations

Model Capacity should consider sample sizes (over-/under-fitting)

Inductive Biases facilitate learning

Practical Recommendations:

Build on Existing Solutions for similar problems

Extensively Tune the hyper-parameters (# layers, # features per layer, …)

Assumptions > Depth hence, prioritize baseline methods

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 19

Modeling

Synopsis:

Deep Nets use layers of increasingly abstract representations

Layers consist of linear parameters and non-linear activations

Model Capacity should consider sample sizes (over-/under-fitting)

Inductive Biases facilitate learning

Practical Recommendations:

Build on Existing Solutions for similar problems

Extensively Tune the hyper-parameters (# layers, # features per layer, …)

Assumptions > Depth hence, prioritize baseline methods

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 19

Fitting

Empirical Risk Minimization

Notation:

hβ : X → RC is our model, parametrized by β ∈ RB (fixed architecture)

`(hβ(x), y) measures the deviation between hβ(x) and y

Ultimate Goal: minimize the expected risk:

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
=

∫
X ×Y

P
(
X = x, Y = y

)
· `

(
hβ(x), y

)
dx dy

Approach: approximate R(hβ , `) empirically with the training data D:

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)
−−−−→
m→∞

R(hβ , `)

and choose β∗ = arg minβ∈RB R̂D(hβ , `).

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 21

Empirical Risk Minimization

Notation:

hβ : X → RC is our model, parametrized by β ∈ RB (fixed architecture)

`(hβ(x), y) measures the deviation between hβ(x) and y

Ultimate Goal: minimize the expected risk:

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
=

∫
X ×Y

P
(
X = x, Y = y

)
· `

(
hβ(x), y

)
dx dy

Approach: approximate R(hβ , `) empirically with the training data D:

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)
−−−−→
m→∞

R(hβ , `)

and choose β∗ = arg minβ∈RB R̂D(hβ , `).

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 21

Empirical Risk Minimization

Notation:

hβ : X → RC is our model, parametrized by β ∈ RB (fixed architecture)

`(hβ(x), y) measures the deviation between hβ(x) and y

Ultimate Goal: minimize the expected risk:

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
=

∫
X ×Y

P
(
X = x, Y = y

)
· `

(
hβ(x), y

)
dx dy

Approach: approximate R(hβ , `) empirically with the training data D:

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)
−−−−→
m→∞

R(hβ , `)

and choose β∗ = arg minβ∈RB R̂D(hβ , `).

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 21

Loss Functions

Mean Squared Error: `
(
h(x), y

)
=

∥∥h(x)− y
∥∥2

2

Cross Entropy / Logistic Loss: `′(h(x), y
)

= −
C∑

i=1

δy=i log
(
[h(x)]i

)

Proper Scoring Rule: any ` : Z × Y → R for which arg minh∈H R(h; `) = P(Y | X).

cross entropy is proven to be such a loss function

hence, ERM with cross entropy readily learns P(Y | X)

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 22

Loss Functions

Mean Squared Error: `
(
h(x), y

)
=

∥∥h(x)− y
∥∥2

2

Cross Entropy / Logistic Loss: `′(h(x), y
)

= −
C∑

i=1

δy=i log
(
[h(x)]i

)

Proper Scoring Rule: any ` : Z × Y → R for which arg minh∈H R(h; `) = P(Y | X).

cross entropy is proven to be such a loss function

hence, ERM with cross entropy readily learns P(Y | X)

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 22

Empirical Risk Minimization (Revisited)

Ultimate Goal: minimize the expected risk:

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
ERM: approximate R(hβ , `) empirically with the training data D:

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)
−−−−→
m→∞

R(hβ , `)

and choose β∗ = arg minβ∈RB R̂D(hβ , `).

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 23

Stochastic First-Order Optimization

Ideas:

R̂D(hβ , `) is just a function to be

minimized

use gradient information to reduce

R̂D(hβ , `) until β∗ is found.

ignore higher-order derivatives to

safe computation time.

introduce randomness into the

gradients to improve convergence.

β

R̂D

R̂D

R̂D(β(k))

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 24

Stochastic First-Order Optimization

Ideas:

R̂D(hβ , `) is just a function to be

minimized

use gradient information to reduce

R̂D(hβ , `) until β∗ is found.

ignore higher-order derivatives to

safe computation time.

introduce randomness into the

gradients to improve convergence.

β

R̂D

R̂D

R̂D(β(k))
∇βR̂D(β(k))
∇2

βR̂D(β(k))

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 24

Stochastic First-Order Optimization

Ideas:

R̂D(hβ , `) is just a function to be

minimized

use gradient information to reduce

R̂D(hβ , `) until β∗ is found.

ignore higher-order derivatives to

safe computation time.

introduce randomness into the

gradients to improve convergence.
β

R̂D

R̂D

R̂D(β(k))
∇βR̂D(β(k))
∇2

βR̂D(β(k))

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 24

Stochastic First-Order Optimization

Stochastic Gradient Descent (SGD): in each step k, reduce the risk R̂D(hβ , `)
w.r.t. a single, random example.

β(k+1) ← β(k) − α(k)∇β `
(

h
(
xi(k) , β(k)), yi(k)

)
where


β(k) the parameter vector of h

α(k) the step size

(xi(k) , yi(k)) the example

Full Gradient Descent (GD): in each step k, reduce R̂D(hβ , `) w.r.t. all examples.

β(k+1) ← β(k) − α(k)∇β R̂D(hβ , `) = β(k) − α(k) 1
m

m∑
i=1

∇β`
(

h
(
xi, β(k)), yi

)

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 25

Stochastic First-Order Optimization

Stochastic Gradient Descent (SGD): in each step k, reduce the risk R̂D(hβ , `)
w.r.t. a single, random example.

β(k+1) ← β(k) − α(k)∇β `
(

h
(
xi(k) , β(k)), yi(k)

)
where


β(k) the parameter vector of h

α(k) the step size

(xi(k) , yi(k)) the example

Full Gradient Descent (GD): in each step k, reduce R̂D(hβ , `) w.r.t. all examples.

β(k+1) ← β(k) − α(k)∇β R̂D(hβ , `) = β(k) − α(k) 1
m

m∑
i=1

∇β`
(

h
(
xi, β(k)), yi

)

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 25

Stochastic First-Order Optimization

Convergence Rate4: worst-case # iterations, in which R̂D(hβ , `) ≤ R̂D(hβ∗ , `) + ε

GD: ∝ m · log(1
ε
)

SGD: ∝ 1
ε

(independent of m)

For SGD, the same rate applies to R(hβ , `) (independent of D if m� k)

Hence, SGD has an amazing performance for large data sets.

4 Bottou, Curtis, and Nocedal, “Optimization Methods for Large-Scale Machine Learning”, 2018.

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 26

Stochastic First-Order Optimization

Convergence Rate4: worst-case # iterations, in which R̂D(hβ , `) ≤ R̂D(hβ∗ , `) + ε

GD: ∝ m · log(1
ε
)

SGD: ∝ 1
ε

(independent of m)

For SGD, the same rate applies to R(hβ , `) (independent of D if m� k)

Hence, SGD has an amazing performance for large data sets.

4 Bottou, Curtis, and Nocedal, “Optimization Methods for Large-Scale Machine Learning”, 2018.

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 26

Stochastic First-Order Optimization

Convergence Rate4: worst-case # iterations, in which R̂D(hβ , `) ≤ R̂D(hβ∗ , `) + ε

GD: ∝ m · log(1
ε
)

SGD: ∝ 1
ε

(independent of m)

For SGD, the same rate applies to R(hβ , `) (independent of D if m� k)

Hence, SGD has an amazing performance for large data sets.

4 Bottou, Curtis, and Nocedal, “Optimization Methods for Large-Scale Machine Learning”, 2018.

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 26

Stochastic First-Order Optimization

Noise Reduction: use mini-batches instead of single examples,

β(k+1) ← β(k) − α(k) 1
b

b∑
i=1

∇β`
(

h
(
xbi , β(k)), ybi

)
. where b� m.

smaller variance of update steps

stepsize {α(k)} is easier to tune

most common approach for deep nets

Learning Rate Scheduling:

even with mini-batches, noise can eventually prevent the reduction of R̂D(hβ , `)

hence, decrease step sizes {α(k)} over time

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 27

Stochastic First-Order Optimization

Noise Reduction: use mini-batches instead of single examples,

β(k+1) ← β(k) − α(k) 1
b

b∑
i=1

∇β`
(

h
(
xbi , β(k)), ybi

)
. where b� m.

smaller variance of update steps

stepsize {α(k)} is easier to tune

most common approach for deep nets

Learning Rate Scheduling:

even with mini-batches, noise can eventually prevent the reduction of R̂D(hβ , `)

hence, decrease step sizes {α(k)} over time

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 27

Stochastic First-Order Optimization

Momentum:

β(k+1) ← β(k) − g
(
β(k)) + γ(k) ·

(
β(k) − β(k−1))

where

{
g(β(k)) SGD, GD, or mini-batch gradient

γ(k) a weighting parameter

Accelerated Gradient a.k.a. Nesterov Momentum:

β(k+1) ← β(k) − g
(
β(k) + γ(k) ·

(
β(k) − β(k−1)))

+ γ(k) ·
(
β(k) − β(k−1))

momentum is applied before g(•)

GD: optimal convergence rate ∝ 1
ε2

SGD: good practical performance but (theoretical) convergence rate is not improved

even better: if combined with adaptive gradients → Adam

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 28

Stochastic First-Order Optimization

Momentum:

β(k+1) ← β(k) − g
(
β(k)) + γ(k) ·

(
β(k) − β(k−1))

where

{
g(β(k)) SGD, GD, or mini-batch gradient

γ(k) a weighting parameter

Accelerated Gradient a.k.a. Nesterov Momentum:

β(k+1) ← β(k) − g
(
β(k) + γ(k) ·

(
β(k) − β(k−1)))

+ γ(k) ·
(
β(k) − β(k−1))

momentum is applied before g(•)

GD: optimal convergence rate ∝ 1
ε2

SGD: good practical performance but (theoretical) convergence rate is not improved

even better: if combined with adaptive gradients → Adam

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 28

Backpropagation

Goal: compute ∇β`(h(xi, β), yi) where

h(xi, β) = ρ
(〈

βd, φ
(
〈βd−1, . . . φ(〈β1, xi〉) 〉

) 〉)
x σ(〈β1, x〉) σ(〈β2, •〉) ρ(〈βd, •〉) h(x). . .

Chain rule of calculus:
∂f(g(x))

∂x
= ∂f(g)

∂g

∂g(x)
∂x

Automatic Differentiation: each function f(x) also implements its gradient

∇xf(x) = (∂f(x)
∂x1

, . . .
∂f(x)
∂xn

)>

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 29

Backpropagation

Goal: compute ∇β`(h(xi, β), yi) where

h(xi, β) = ρ
(〈

βd, φ
(
〈βd−1, . . . φ(〈β1, xi〉) 〉

) 〉)
x σ(〈β1, x〉) σ(〈β2, •〉) ρ(〈βd, •〉) h(x). . .

Chain rule of calculus:
∂f(g(x))

∂x
= ∂f(g)

∂g

∂g(x)
∂x

Automatic Differentiation: each function f(x) also implements its gradient

∇xf(x) = (∂f(x)
∂x1

, . . .
∂f(x)
∂xn

)>

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 29

Backpropagation

Goal: compute ∇β`(h(xi, β), yi) where

h(xi, β) = ρ
(〈

βd, φ
(
〈βd−1, . . . φ(〈β1, xi〉) 〉

) 〉)
x σ(〈β1, x〉) σ(〈β2, •〉) ρ(〈βd, •〉) h(x). . .

Chain rule of calculus:
∂f(g(x))

∂x
= ∂f(g)

∂g

∂g(x)
∂x

Automatic Differentiation: each function f(x) also implements its gradient

∇xf(x) = (∂f(x)
∂x1

, . . .
∂f(x)
∂xn

)>

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 29

Deep Networks

Deep Nets: use multiple (logistic regression-like) layers

learnable linear combinations 〈β, •〉

non-linear activations σ

−1 1
−1

1

〈β, •〉

σ
max(0, •)

tanh(•)

x

σ(〈β1,1, x〉)

σ(〈β1,2, x〉)
.
.
.

σ(〈β1,w, x〉)

σ(〈β2,1, •〉)

σ(〈β2,2, •〉)
.
.
.

σ(〈β2,w′ , •〉)

〈βd,1, •〉

〈βd,2, •〉
.
.
.

〈βd,w′′ , •〉

p1

p2
.
.
.

pC

()
. . .
. . .

. . .

ρin
p
u
t h
id
d
e
n
la
y
e
r
1

h
id
d
e
n
la
y
e
r
2

lo
g
-
o
d
d
s

p
ro
b
a
b
il
it
ie
s

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 30

Stochastic First-Order Optimization

Synopsis:

ERM: we minimize R̂D(hβ , `) −−−−→
m→∞

R(hβ , `)

SGD: gradients randomized through sampling converge quickly for large m

Mini-Batching: common practice to reduce SGD gradient noise

LR Scheduling: common practice to balance the noise

Nesterov Momentum: can improve convergence

Practical Recommendations:

Carefully Design Loss Functions to reflect your goals

Use Popular First-Order Methods like Adam or SGD with Nesterov Momentum

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 31

Stochastic First-Order Optimization

Synopsis:

ERM: we minimize R̂D(hβ , `) −−−−→
m→∞

R(hβ , `)

SGD: gradients randomized through sampling converge quickly for large m

Mini-Batching: common practice to reduce SGD gradient noise

LR Scheduling: common practice to balance the noise

Nesterov Momentum: can improve convergence

Practical Recommendations:

Carefully Design Loss Functions to reflect your goals

Use Popular First-Order Methods like Adam or SGD with Nesterov Momentum

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 31

Stochastic First-Order Optimization

Synopsis:

ERM: we minimize R̂D(hβ , `) −−−−→
m→∞

R(hβ , `)

SGD: gradients randomized through sampling converge quickly for large m

Mini-Batching: common practice to reduce SGD gradient noise

LR Scheduling: common practice to balance the noise

Nesterov Momentum: can improve convergence

Practical Recommendations:

Carefully Design Loss Functions to reflect your goals

Use Popular First-Order Methods like Adam or SGD with Nesterov Momentum

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 31

Stochastic First-Order Optimization

Synopsis:

ERM: we minimize R̂D(hβ , `) −−−−→
m→∞

R(hβ , `)

SGD: gradients randomized through sampling converge quickly for large m

Mini-Batching: common practice to reduce SGD gradient noise

LR Scheduling: common practice to balance the noise

Nesterov Momentum: can improve convergence

Practical Recommendations:

Carefully Design Loss Functions to reflect your goals

Use Popular First-Order Methods like Adam or SGD with Nesterov Momentum

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 31

Data and Assumptions

A Premature Conclusion

Machine learning data model fit= ◦ ◦Machine learning data model fit= ◦ ◦

What we have learned:

Deep Nets are universal function approximators

Customized loss functions let them learn what we need

We know effective ways of optimizing them

What could possibly go wrong?

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 33

A Premature Conclusion

Machine learning data model fit= ◦ ◦Machine learning data model fit= ◦ ◦

What we have learned:

Deep Nets are universal function approximators

Customized loss functions let them learn what we need

We know effective ways of optimizing them

What could possibly go wrong?

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 33

Learning Assumptions

Recall that we approximate

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
through

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)

Independent and Identical Distribution (IID) Assumption:

(x, y) ∼ P ∀ (x, y) ∈ D ∪Dtest

Data Set Shift breaks the IID assumption

D ∼ PS (e.g., a simulation)

Dtest ∼ PT (e.g., a real detector)

PS 6= PT

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 34

Learning Assumptions

Recall that we approximate

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
through

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)

Independent and Identical Distribution (IID) Assumption:

(x, y) ∼ P ∀ (x, y) ∈ D ∪Dtest

Data Set Shift breaks the IID assumption

D ∼ PS (e.g., a simulation)

Dtest ∼ PT (e.g., a real detector)

PS 6= PT

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 34

Learning Assumptions

Recall that we approximate

R(hβ , `) = E(x,y)∼P
(
`(hβ(x), y)

)
through

R̂D(hβ , `) = 1
m

m∑
i=1

`
(
hβ(xi), yi

)

Independent and Identical Distribution (IID) Assumption:

(x, y) ∼ P ∀ (x, y) ∈ D ∪Dtest

Data Set Shift breaks the IID assumption

D ∼ PS (e.g., a simulation)

Dtest ∼ PT (e.g., a real detector)

PS 6= PT

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 34

Types of Data Set Shift5

Recognize that P(X, Y) = P(X | Y) · P(Y)

= P(X) · P(Y | X)

Label Shift:

PS(X | Y) = PT (X | Y)

PS(Y) 6= PT (Y)

Concept Shift:

PS(Y) = PT (Y)

PS(X | Y) 6= PT (X | Y)

(Also) Concept Shift:

PS(X) = PT (X)

PS(Y | X) 6= PT (Y | X)

Covariate Shift:

PS(Y | X) = PT (Y | X)

PS(X) 6= PT (X)

Correction Methods are available for each type, but require extra information

(additional data, more assumptions, …)

5 Kull and Flach, “Patterns of dataset shift”, 2014

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 35

Types of Data Set Shift5

Recognize that P(X, Y) = P(X | Y) · P(Y)

= P(X) · P(Y | X)

Label Shift:

PS(X | Y) = PT (X | Y)

PS(Y) 6= PT (Y)

Concept Shift:

PS(Y) = PT (Y)

PS(X | Y) 6= PT (X | Y)

(Also) Concept Shift:

PS(X) = PT (X)

PS(Y | X) 6= PT (Y | X)

Covariate Shift:

PS(Y | X) = PT (Y | X)

PS(X) 6= PT (X)

Correction Methods are available for each type, but require extra information

(additional data, more assumptions, …)

5 Kull and Flach, “Patterns of dataset shift”, 2014

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 35

Types of Data Set Shift5

Recognize that P(X, Y) = P(X | Y) · P(Y)

= P(X) · P(Y | X)

Label Shift:

PS(X | Y) = PT (X | Y)

PS(Y) 6= PT (Y)

Concept Shift:

PS(Y) = PT (Y)

PS(X | Y) 6= PT (X | Y)

(Also) Concept Shift:

PS(X) = PT (X)

PS(Y | X) 6= PT (Y | X)

Covariate Shift:

PS(Y | X) = PT (Y | X)

PS(X) 6= PT (X)

Correction Methods are available for each type, but require extra information

(additional data, more assumptions, …)

5 Kull and Flach, “Patterns of dataset shift”, 2014

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 35

Types of Data Set Shift5

Recognize that P(X, Y) = P(X | Y) · P(Y)

= P(X) · P(Y | X)

Label Shift:

PS(X | Y) = PT (X | Y)

PS(Y) 6= PT (Y)

Concept Shift:

PS(Y) = PT (Y)

PS(X | Y) 6= PT (X | Y)

(Also) Concept Shift:

PS(X) = PT (X)

PS(Y | X) 6= PT (Y | X)

Covariate Shift:

PS(Y | X) = PT (Y | X)

PS(X) 6= PT (X)

Correction Methods are available for each type, but require extra information

(additional data, more assumptions, …)

5 Kull and Flach, “Patterns of dataset shift”, 2014

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 35

Types of Data Set Shift5

Recognize that P(X, Y) = P(X | Y) · P(Y)

= P(X) · P(Y | X)

Label Shift:

PS(X | Y) = PT (X | Y)

PS(Y) 6= PT (Y)

Concept Shift:

PS(Y) = PT (Y)

PS(X | Y) 6= PT (X | Y)

(Also) Concept Shift:

PS(X) = PT (X)

PS(Y | X) 6= PT (Y | X)

Covariate Shift:

PS(Y | X) = PT (Y | X)

PS(X) 6= PT (X)

Correction Methods are available for each type, but require extra information

(additional data, more assumptions, …)

5 Kull and Flach, “Patterns of dataset shift”, 2014

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 35

Types of Data Set Shift5

Recognize that P(X, Y) = P(X | Y) · P(Y)

= P(X) · P(Y | X)

Label Shift:

PS(X | Y) = PT (X | Y)

PS(Y) 6= PT (Y)

Concept Shift:

PS(Y) = PT (Y)

PS(X | Y) 6= PT (X | Y)

(Also) Concept Shift:

PS(X) = PT (X)

PS(Y | X) 6= PT (Y | X)

Covariate Shift:

PS(Y | X) = PT (Y | X)

PS(X) 6= PT (X)

Correction Methods are available for each type, but require extra information

(additional data, more assumptions, …)

5 Kull and Flach, “Patterns of dataset shift”, 2014

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 35

Domain-Adversarial Unsupervised Domain Adaptation6

Assume Concept Shift PS(X | Y) 6= PT (X | Y) and PS(Y) = PT (Y)

Employ Unlabeled Data DT =
{

x ∼ PT (X)
}

x

la
y
e
r
1

la
y
e
r
2

la
y
e
r

n

…

n
+

1

n
+

2

y…

d
o
m
a
in

1

d
o
m
a
in

2

d =

{
1 if x ∈ DT

0 if (x, y) ∈ D
−∇

β RD
…

6 Ganin et al., “Domain-Adversarial Training of Neural Networks”, 2016

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 36

Domain-Adversarial Unsupervised Domain Adaptation6

Assume Concept Shift PS(X | Y) 6= PT (X | Y) and PS(Y) = PT (Y)

Employ Unlabeled Data DT =
{

x ∼ PT (X)
}

x

la
y
e
r
1

la
y
e
r
2

la
y
e
r

n

…

n
+

1

n
+

2

y…

d
o
m
a
in

1

d
o
m
a
in

2

d =

{
1 if x ∈ DT

0 if (x, y) ∈ D
−∇

β RD
…

6 Ganin et al., “Domain-Adversarial Training of Neural Networks”, 2016

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 36

Domain-Adversarial Unsupervised Domain Adaptation6

Assume Concept Shift PS(X | Y) 6= PT (X | Y) and PS(Y) = PT (Y)

Employ Unlabeled Data DT =
{

x ∼ PT (X)
}

x

la
y
e
r
1

la
y
e
r
2

la
y
e
r

n

…

n
+

1

n
+

2

y…

d
o
m
a
in

1

d
o
m
a
in

2

d =

{
1 if x ∈ DT

0 if (x, y) ∈ D
−∇

β RD
…

6 Ganin et al., “Domain-Adversarial Training of Neural Networks”, 2016

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 36

Class-Conditional Label Noise7

Label Noise:

Training Labels ŷ are randomly flipped versions of the ground-truth y

Assumptions about the flipping process y → ŷ are required

Class-Conditional Noise: P(Y = +1 | X = x) = a · P(Ŷ = +1 | X = x) + b

+

−

+̂

−̂

1 − p+
p+

p−
1 − p−

y ŷ

7 Menon et al., “Learning from Corrupted Binary Labels via Class-Probability Estimation”, 2015

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 37

Class-Conditional Label Noise7

Label Noise:

Training Labels ŷ are randomly flipped versions of the ground-truth y

Assumptions about the flipping process y → ŷ are required

Class-Conditional Noise: P(Y = +1 | X = x) = a · P(Ŷ = +1 | X = x) + b

+

−

+̂

−̂

1 − p+
p+

p−
1 − p−

y ŷ

7 Menon et al., “Learning from Corrupted Binary Labels via Class-Probability Estimation”, 2015

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 37

Deep Sets8

Each instance is a set {xi ∈ X : 1 ≤ i ≤ m} of variable size m

Y are properties of such sets

xi

in
s
ta
n
c
e
la
y
e
r
1

in
s
ta
n
c
e
la
y
e
r
2

in
s
ta
n
c
e
la
y
e
r

n

…

φ

s
e
t
la
y
e
r

1

s
e
t
la
y
e
r

2

y = ρ
(∑m

i
φ(xi)

)m∑
i

φ(xi) …

ρ

8 Zaheer et al., “Deep sets”, 2017

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 38

Deep Sets8

Each instance is a set {xi ∈ X : 1 ≤ i ≤ m} of variable size m

Y are properties of such sets

xi

in
s
ta
n
c
e
la
y
e
r
1

in
s
ta
n
c
e
la
y
e
r
2

in
s
ta
n
c
e
la
y
e
r

n

…

φ

s
e
t
la
y
e
r

1

s
e
t
la
y
e
r

2

y = ρ
(∑m

i
φ(xi)

)m∑
i

φ(xi) …

ρ

8 Zaheer et al., “Deep sets”, 2017

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 38

Deep Sets8

Each instance is a set {xi ∈ X : 1 ≤ i ≤ m} of variable size m

Y are properties of such sets

xi

in
s
ta
n
c
e
la
y
e
r
1

in
s
ta
n
c
e
la
y
e
r
2

in
s
ta
n
c
e
la
y
e
r

n

…

φ

s
e
t
la
y
e
r

1

s
e
t
la
y
e
r

2

y = ρ
(∑m

i
φ(xi)

)m∑
i

φ(xi) …

ρ

8 Zaheer et al., “Deep sets”, 2017

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 38

Set Transformers9

Attention Block

SAB

s
×

i

s
×

o

PA

s
×

i

1
×

i 1
×

o

Attention

X1

X2

WQ

WK

WV

σ(·) + +FF

s
×

i

s
×

o

X

A
tt
e
n
ti
o
n
B
lo
c
k

Self-Attention Block:

X

I

A
tt
e
n
ti
o
n
B
lo
c
k

Pooling by Attention:

SAB ◦ … ◦ SAB ◦ PASet Encoder:

9 Lee et al., “Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks”, 2019

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 39

Set Transformers9

Attention Block

SAB

s
×

i

s
×

o
PA

s
×

i

1
×

i 1
×

o
Attention

X1

X2

WQ

WK

WV

σ(·) + +FF

s
×

i

s
×

o

X

A
tt
e
n
ti
o
n
B
lo
c
k

Self-Attention Block:

X

I

A
tt
e
n
ti
o
n
B
lo
c
k

Pooling by Attention:

SAB ◦ … ◦ SAB ◦ PASet Encoder:

9 Lee et al., “Set Transformer: A Framework for Attention-based Permutation-Invariant Neural Networks”, 2019

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 39

Concluding Remarks

Should I Use Neural Networks?

Architecture Search vs feature engineering

Scale great for big data (but not for small data)

GPUs required as well as computation time for fitting

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 41

Implementing Neural Networks

JAX, PyTorch, Tensorflow, or Keras?

Keras, Tensorflow: established solutions

PyTorch, JAX: maximum flexibility

JAX:

JIT compilation speedups

API identical to Numpy/Scipy

Clean functional programming style (clarity, separation of concerns)

Evolving eco-system and fewer solutions

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 42

Implementing Neural Networks

JAX, PyTorch, Tensorflow, or Keras?

Keras, Tensorflow: established solutions

PyTorch, JAX: maximum flexibility

JAX:

JIT compilation speedups

API identical to Numpy/Scipy

Clean functional programming style (clarity, separation of concerns)

Evolving eco-system and fewer solutions

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 42

Agenda

Machine learning data model fit= ◦ ◦Machine learning data model fit= ◦ ◦

assumptions

1. 2.3.

1. Modeling

2. Fitting

3. Data and Assumptions

4. Concluding Remarks

+ Hands-On Exercises (Tue ~ 45 min, Thu ~ 90 min)

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 43

Hands-On Exercises

https:
//git.e5.physik.tu-dortmund.de/qfuehring/ml_intro_handson

M. Bunse, Q. Führing, and V. Jevtic Deep Learning – An Introduction 44

https://git.e5.physik.tu-dortmund.de/qfuehring/ml_intro_handson
https://git.e5.physik.tu-dortmund.de/qfuehring/ml_intro_handson

	Introduction / Machine Learning
	Modeling
	Fitting
	Data and Assumptions
	Concluding Remarks

