

Cosmic Rays and Particle Physics

Michael Schmelling - MPI for Nuclear Physics

Outline

- Introduction
- Particle Physics Basics
- Air Showers and the Muon Puzzle
- Contributions by LHCb
- Summary

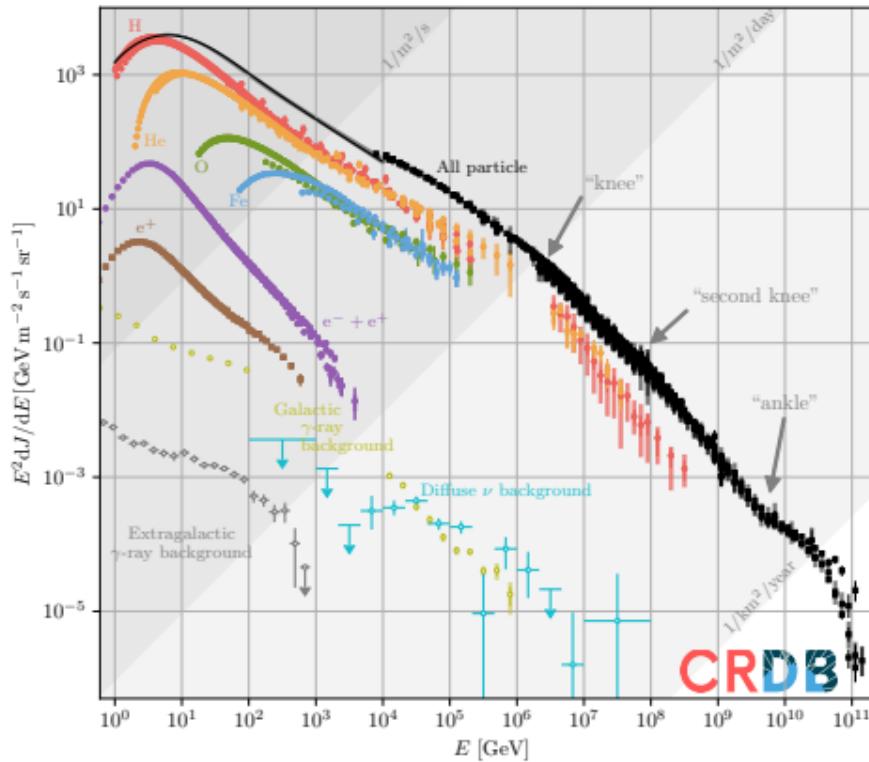
5th Graduate School on Astro-Particle Physics

source: wikipedia

Hölderhoff-Stift around the time of
the discovery of cosmic rays

1 Introduction

❖ cosmic ray energy spectrum outside the atmosphere



- steeply falling spectrum
- huge energy range
- stable particles & nuclei
- open questions
 - ▶ acceleration mechanism
 - ▶ composition vs energy
- study of highest energies
 - ▶ ground based experiments
 - ▶ atmosphere as detector

The astroparticle physics connection

❖ cosmic rays = high energy elementary particles and nuclei

■ production in extreme environments

- ▶ supernova explosions
- ▶ black-hole/neutron star mergers
- ▶ high energy collisions in relativistic plasmas

■ propagation

- ▶ interstellar and intergalactic medium
- ▶ interactions with EM fields, gas and dust

■ detection by extensive air showers

- ▶ cascade of electromagnetic and hadronic interactions

■ modelling with knowledge of fundamental interactions: CRpropa, QGSjet, EPOS, ...

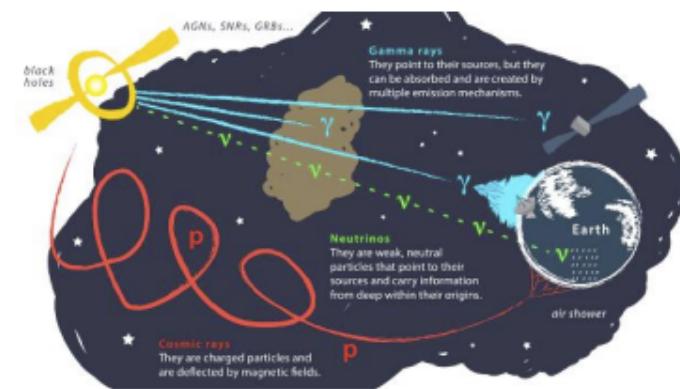
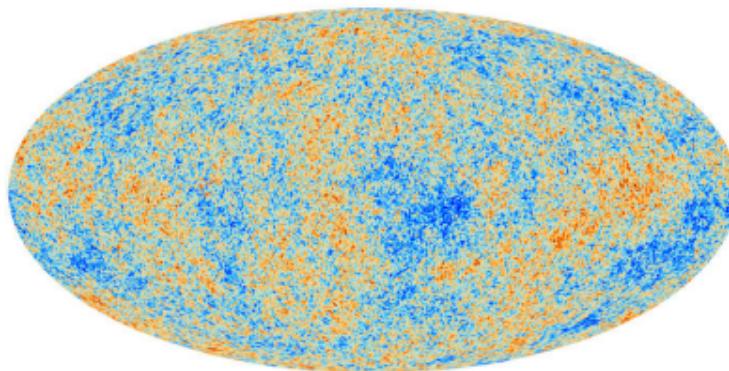
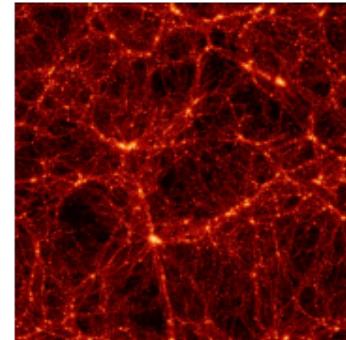


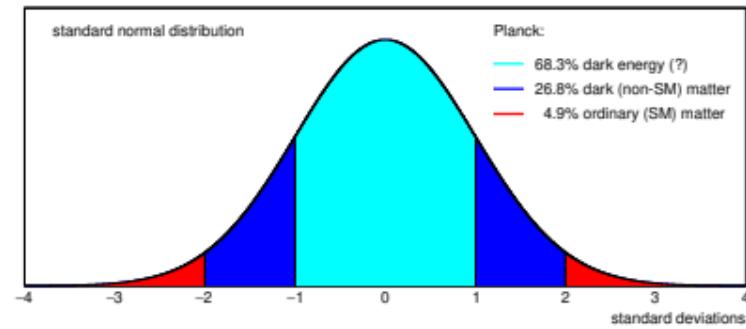
Image: Juan Antonio Aguilar and Jamie Yang, Ice Cube/WIPAC

The cosmology connection

- ❖ results from cosmic microwave background & structure formation



- the universe is “flat” (euclidean)
- “gaussian” sharing of energy content
 - ▶ 95% not understood
 - ▶ New (particle) Physics



The Standard Model of particle physics

- ❖ moderately small number of fundamental fields and interactions

Three generations of matter (fermions)			
	I	II	III
mass \rightarrow	2.4 MeV/c ²	1.27 GeV/c ²	171.2 GeV/c ²
charge \rightarrow	2/3	2/3	2/3
spin \rightarrow	1/2	1/2	1/2
name \rightarrow	u up	c charm	t top
Quarks			
mass \rightarrow	4.8 MeV/c ²	104 MeV/c ²	4.2 GeV/c ²
charge \rightarrow	-1/3	-1/3	-1/3
spin \rightarrow	1/2	1/2	1/2
name \rightarrow	d down	s strange	b bottom
Leptons			
mass \rightarrow	<2.2 eV/c ²	<0.17 MeV/c ²	<15.5 MeV/c ²
charge \rightarrow	0	0	0
spin \rightarrow	1/2	1/2	1/2
name \rightarrow	ν_e electron neutrino	ν_μ muon neutrino	ν_τ tau neutrino
Gauge bosons			
mass \rightarrow	0.511 MeV/c ²	105.7 MeV/c ²	1.777 GeV/c ²
charge \rightarrow	-1	-1	-1
spin \rightarrow	1/2	1/2	1/2
name \rightarrow	e electron	μ muon	τ tau
plus antiparticles			

■ (unexplained) findings

- ▶ 1 fundamental scalar
- ▶ 2 types of fermions
- ▶ 3 generations
- ▶ 2 fermion doublets/generation
- ▶ 3 gauge interactions

further questions ➔

❖ what determines the mass spectrum?

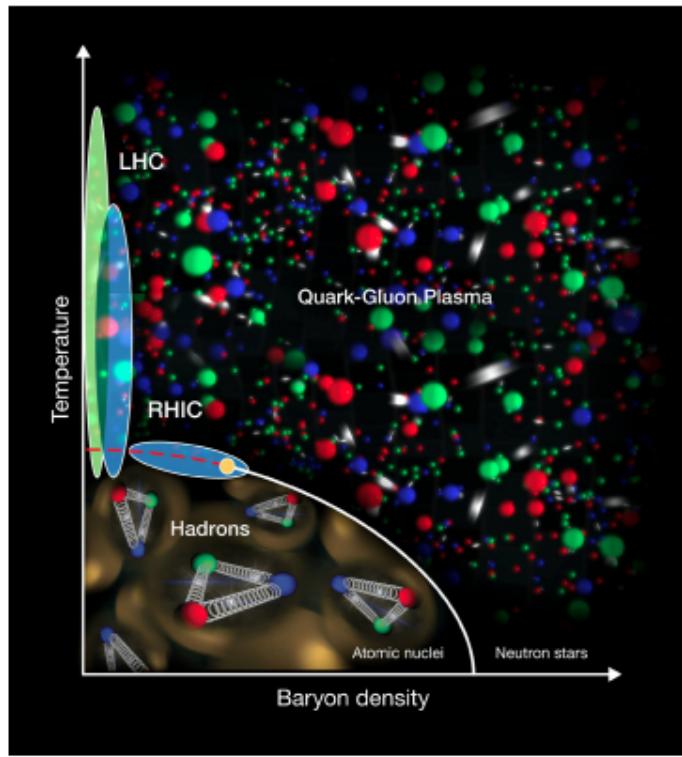
- the Higgs mechanism does not predict mass values
- understanding mass hierarchy requires New Physics (new particles & phenomenology)

❖ where is the antimatter?

(HST)

- no evidence for sizeable amounts of antimatter in the universe, i.e. lack of ...
 - ▶ annihilation radiation
 - ▶ anti-nuclei in cosmic rays

❖ how does matter behave under extreme conditions?

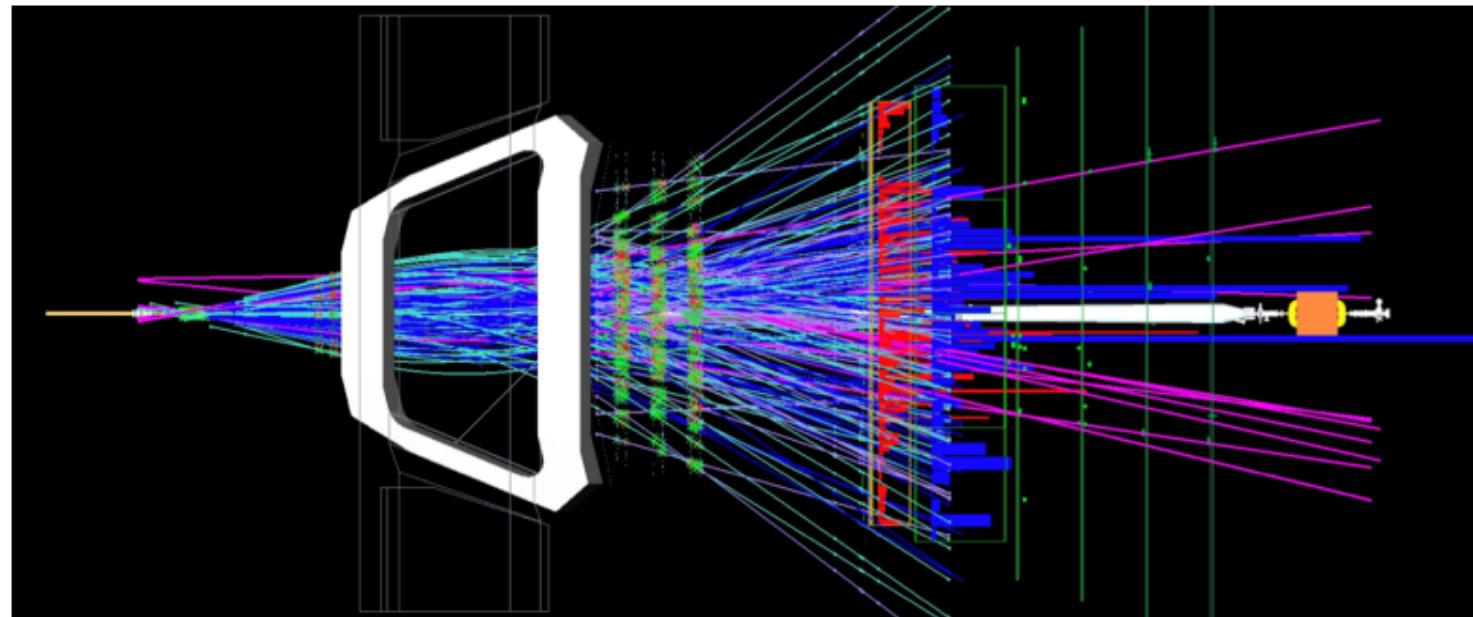


- what happens
 - ▶ at extreme densities
 - ▶ at extreme temperatures
- equation of state?
- phase transitions?
- critical point?

the tools of the trade →

2 Particle Physics Basics

- ❖ high-energy collisions among leptons, hadrons or nuclei

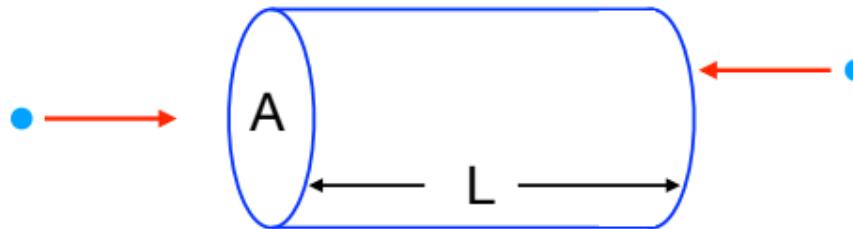


→ creation of stuff that did not exist in the initial state?

describe and understand what's going on →

Cross-section – the fundamental quantity in particle physics

- consider two particles that interact in a cylindrical volume



- ▶ A, L : area of the front faces and length of the volume
- ▶ σ_X : cross-section for a scattering process X
- ▶ the locations of both particles are drawn from a uniform PDF over A
- the probability of an interaction X is p_X

$$p_X = \frac{\sigma_X}{A}$$

→ cross-section is measured in units of “area”

❖ exercise: how many electrons are scattered when ...

- ▶ the electron-hydrogen scattering cross-section $\sigma = 10^{-24} \text{ cm}^2$
- ▶ a volume with $A = 100 \text{ cm}^2$ and $L = 100 \text{ cm}$ filled with H_2 -gas
- ▶ the gas is at a pressure of 1 atm and at room temperature
- ▶ and a bunch of $N_e = 10^6$ electrons is shot into the volume?

- total number of hydrogen atoms

$$N_H = 2N_A \frac{A \cdot L}{22\,400 \text{ cm}^3}$$

- expected number of scattering processes

$$n = N_e N_H \frac{\sigma}{A} = N_e N_A \frac{2 L \sigma}{22\,400 \text{ cm}^3} = \frac{10^6 \cdot 6.022 \cdot 10^{23} \cdot 2 \cdot 100 \cdot 10^{-24}}{22\,400} \approx 5377$$

- ▶ only the length L of the target area matters
- ▶ the actual number of scattering processes is a binomial random variable
- ▶ for $p = 0.05377$ it can be approximated by a poisson distribution

Total and differential cross-sections

❖ total cross-section

- something happens – the final state is different from the initial state
- problem: “different” can be anything
 - ▶ change of momentum – always happens via EM and/or gravitational radiation
 - ▶ change of momentum larger than a certain threshold
 - ▶ without creation of new massive particles → elastic cross-section
 - ▶ with creation of new massive particles → inelastic cross-section

▶ further remarks

- “total cross-section” sounds simple but is a highly non-trivial concept
- requires observables that satisfy two conditions:
 1. experimentally accessible
 2. theoretically well defined

❖ differential cross-section

- defined for a variable x that characterizes the final state
- measured by the total cross-section change $d\sigma$ in an infinitesimal range dx

$$\frac{d\sigma}{dx}$$

- ▶ experimental definition: finite range Δx instead of dx

$$\frac{d\sigma}{dx} \bigg|_{\text{exp}} = \frac{\Delta\sigma}{\Delta x} = \frac{1}{\Delta x} \int_{\Delta x} dx \frac{d\sigma}{dx} \approx \frac{d\sigma}{dx}$$

- ▶ the total cross-section σ is obtained integrating over all x
- ▶ usually requires extrapolation for experimentally inaccessible regions

Definition of observables – the theory-experiment divide

- ❖ example: number of final state particles produced in a pp collision

- L: “longlived-prompt”

- ▶ all particles with a proper lifetime $\tau > \tau_0$ that have no ancestors with $\tau > \tau_0$
 - | definition based only on particle properties – not on how the event evolved
 - | experimental selection by e.g. impact parameter needs correction

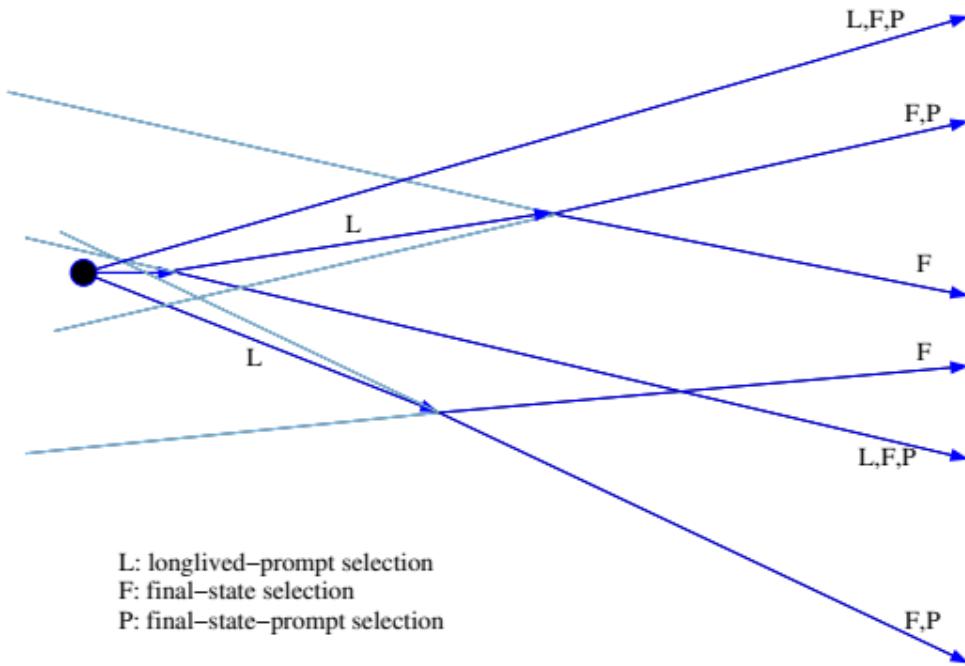
- F: “final-state”

- ▶ all particles that did not decay within a fixed flight length
 - | depends on flight length and Lorentz frame
 - | extra random component since e.g. K_S^0 may or may not decay

- P: “final-state-prompt”

- ▶ all final-state particles that extrapolate within a certain distance to the PV
 - | impact parameter is experimentally accessible
 - | same caveats as method “F”

❖ example illustrate the different final state definitions

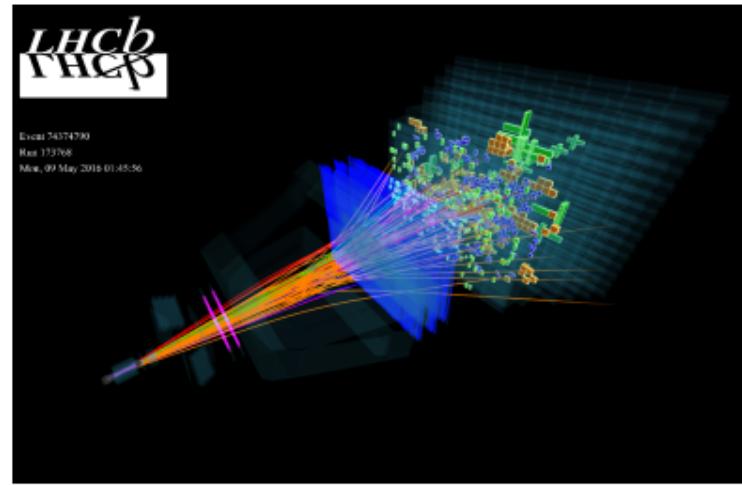


- method "L"
 - ▶ well defined final state
 - ▶ energy & charge conserved
 - ▶ little impact of secondary interactions if $\tau_0 = 30$ ps
- method "F"
 - ▶ actually surviving particles
 - ▶ energy & charge conservation violated by secondary interactions
- method "P"
 - ▶ decay kinematic dependent
 - ▶ energy & charge conservation violated

Kinematic and other variables – different windows to physics

❖ quantitative description of multi-particle final states

- cross-sections & cross-section ratios
- number of produced particles
- particle fractions
- multiplicity distribution(s)
- fluctuations in the particle production
- correlations between produced particles
- particle spins
- distributions in kinematic variables
 - ▶ rapidity and pseudorapidity
 - ▶ Feynman's x_F
 - ▶ transverse momentum



- ▶ $O(10^{3...4})$ dimensional phase space
- ▶ full exploration requires ML techniques

Lorentz transformations (in natural units $c=1$)

❖ boost to the lab from a system that moves with velocity $\beta = v/c$ in the lab

$$\begin{pmatrix} E \\ p_L \end{pmatrix} = \begin{pmatrix} \gamma & \gamma\beta \\ \gamma\beta & \gamma \end{pmatrix} \begin{pmatrix} E^* \\ p_L^* \end{pmatrix} \quad \text{and} \quad p_T = p_T^* \quad \text{with} \quad \gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

- ▶ E^* : energy in the moving system
- ▶ p_L^* : longitudinal momentum along the boost direction in the moving system
- ▶ p_T^* : transverse momentum w.r.t the boost direction in the moving system
- ▶ E, p_L, p_T : 4-momentum in the lab system

■ example: 4-momentum of a particle of mass m moving with velocity β

$$E^* = m \quad , \quad p_L^* = 0 \quad , \quad p_T^* = 0 \quad \rightarrow \quad E = \gamma m \quad , \quad p_L = \gamma \beta m \quad , \quad p_T = 0$$

and thus $\gamma = \frac{E}{m}$, $\beta = \frac{p}{E}$ and $\gamma \beta = \frac{p}{m}$

Rapidity

- ❖ relativistic alternative to classical velocity

$$y = \frac{1}{2} \ln \frac{1 + \beta}{1 - \beta} \in [-\infty, +\infty]$$

- ▶ rapidity of a system moving with velocity β
- ▶ classical limit $\beta \rightarrow 0$

$$y = \frac{1}{2} \ln \frac{1 + \beta}{1 - \beta} \approx \frac{1}{2} \ln(1 + \beta)^2 = \ln(1 + \beta) \approx \beta$$

- rapidity of a particle with 4-momentum (E, p)

$$y = \frac{1}{2} \ln \frac{1 + \beta}{1 - \beta} = \frac{1}{2} \ln \frac{1 + p/E}{1 - p/E} = \frac{1}{2} \ln \frac{E + p}{E - p}$$

- ▶ rapidity with respect to a certain direction: $p \rightarrow p_L$
- ▶ rapidity axis = beam direction = boost direction between lab and center-of-mass

❖ exercise: improve the approximation $y \approx \beta$

solution: use the Taylor expansion of $\ln(1 + x)$ at $x = 0$

$$\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \frac{x^5}{5} \dots$$

it follows

$$\begin{aligned} y &= \frac{1}{2}(\ln(1 + \beta) - \ln(1 - \beta)) \\ &= \frac{1}{2} \left(\beta - \frac{\beta^2}{2} + \frac{\beta^3}{3} - \frac{\beta^4}{4} + \frac{\beta^5}{5} \dots \right) - \frac{1}{2} \left(-\beta - \frac{\beta^2}{2} - \frac{\beta^3}{3} - \frac{\beta^4}{4} - \frac{\beta^5}{5} \dots \right) \\ &= \beta + \frac{\beta^3}{3} + \frac{\beta^5}{5} + \dots \end{aligned}$$

→ only odd powers of β contribute

❖ behaviour under boost along the rapidity axis

rapidity of a particle in a reference system moving with velocity β

$$y^* = \frac{1}{2} \ln \frac{E^* + p_L^*}{E^* - p_L^*}$$

Lorentz boost

$$y = \frac{1}{2} \ln \frac{E + p_L}{E - p_L} = \frac{1}{2} \ln \frac{(\gamma E^* + \gamma \beta p_L^*) + (\gamma p_L^* + \gamma \beta E^*)}{(\gamma E^* + \gamma \beta p_L^*) - (\gamma p_L^* + \gamma \beta E^*)}$$

$$= \frac{1}{2} \ln \frac{(E^* + p_L^*)(1 + \beta)}{(E^* - p_L^*)(1 - \beta)} = y^* + y_0 \quad \text{with} \quad y_0 = \frac{1}{2} \ln \frac{1 + \beta}{1 - \beta}$$

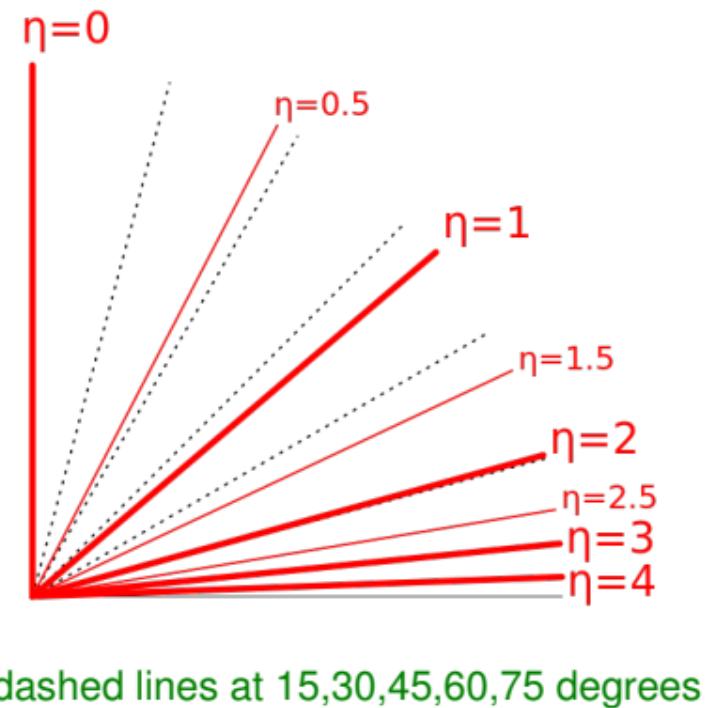
→ rapidity differences are invariant under boost along the rapidity axis

Pseudorapidity

- ❖ rapidity of a massless particle

$$\begin{aligned}\eta &= \frac{1}{2} \ln \frac{E(m=0) + p_L}{E(m=0) - p_L} \\ &= \frac{1}{2} \ln \frac{p + p_L}{p - p_L} \\ &= \frac{1}{2} \ln \frac{1 + p_L/p}{1 - p_L/p} \\ &= \ln \sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}} \\ &= -\ln \tan \frac{\theta}{2}\end{aligned}$$

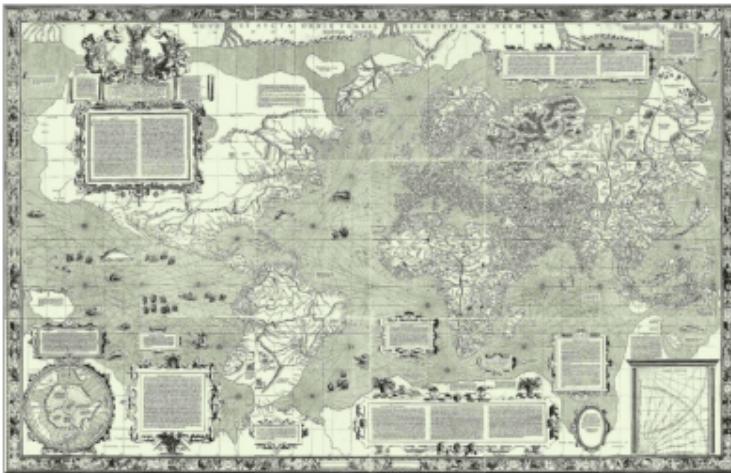
- ▶ function of the polar angle to the rapidity axis



Historical note: Who invented pseudorapidity?

❖ historical example where using the right variable makes a difference

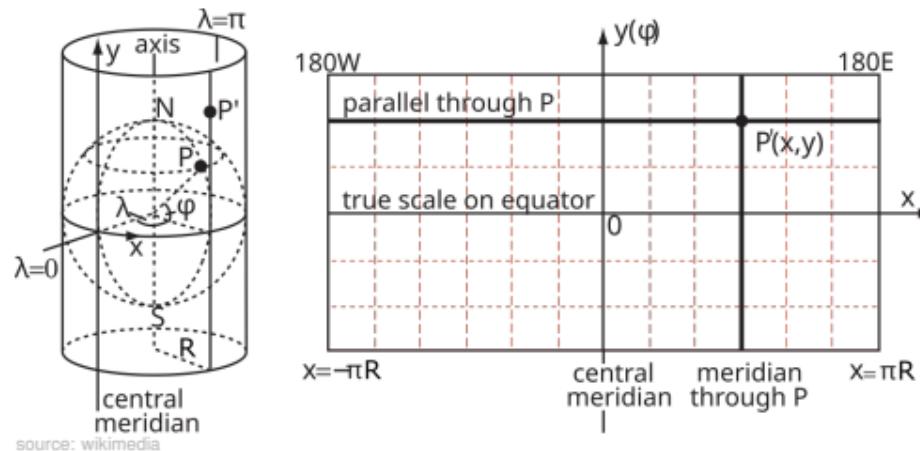
- wanted: a map where a straight line corresponds to a fixed direction on the surface of the earth
- useful for navigation at sea: plotted and actual direction agree



source: wikipedia

Gerardus Mercator
(Gerhard Krämer), 1569

- ansatz: project earth surface on a cylinder that touches the earth at the equator



source: wikimedia

- longitude $-\pi < \lambda < \pi$, latitude $-\pi/2 < \varphi < \pi/2$
- x -direction: parallel to equator, pointing east
- y -direction: parallel to axis of rotation, pointing north
- mapping: meridians parallel to the y -axis, parallels parallel to the x -axis,

$$x = \lambda \quad \text{and} \quad y = g(\varphi) \quad \text{with} \quad g(0) = 0$$

- construction of an angle-preserving projection from infinitesimal displacements
 - ▶ du, dv in local cartesian coordinates on earth, u pointing east, v pointing north
 - ▶ dx, dy displacements in the projection

$$du = \cos \varphi d\lambda \quad \text{and} \quad dv = d\varphi$$

$$dx = d\lambda \quad \text{and} \quad dy = g'(\varphi) d\varphi$$

- condition for equal angles (slopes) in (x, y) and (u, v)

$$\frac{dy}{dx} = \frac{dv}{du} \rightarrow g'(\varphi) = \frac{1}{\cos \varphi}$$

- unique solutions with $g(0) = 0$: Mercator projection

$$g(\varphi) = \ln \tan \left(\frac{\pi}{4} + \frac{\varphi}{2} \right) = -\ln \tan \frac{\theta}{2} \quad \text{with polar angle} \quad \theta = \pi/2 - \varphi$$

→ Mercator-projection = mapping of parallels by $\eta(\theta)$

Feynman's x_F

- ❖ definition motivated by high-energy fixed target pA collisions

$$x_F = \frac{p_z}{p_z^{\max}} = \frac{p_z}{p_z^{\text{beam}}}$$

- purely longitudinal variable
- behaviour under Lorentz boost $p'_z = \gamma(E + \beta p_z)$ when $\beta \rightarrow 1$ and $E \approx |p_z|$

$$x'_F = \frac{p'_z}{p_z'^{\max}} \approx \frac{\gamma(|p_z| + p_z)}{\gamma(|p_z^{\max}| + p_z^{\max})} = \begin{cases} x_F & \text{for } p_z > 0 \\ 0 & \text{for } p_z < 0 \end{cases}$$

- ▶ Lorentz-invariant variable for high-momentum forward going particles
- ▶ frame dependence for backwards region

■ alternative definition

$$x_F \approx \frac{E + p_z}{(E + p_z)_{\max}} \approx \sqrt{\frac{p_x^2 + p_y^2}{s}} \exp(y_{cm}) \in [0, 1]$$

■ definition in centre-of-mass system

$$x_F = \frac{2p_z^{cm}}{\sqrt{s}} = 2\sqrt{\frac{m^2 + p_x^2 + p_y^2}{s}} \sinh y_{cm} \in [-1, +1]$$

► ambiguity: proton-nucleon vs proton-nucleus centre-of-mass

► bottom line

$x_F \rightarrow 1$ Lorentz invariant and universal

$x_F \leq 0$ frame- and definition dependent

Transverse momentum p_T

- ❖ momentum orthogonal to the direction of the colliding particles

$$p_T = \sqrt{p_x^2 + p_y^2}$$

- Lorentz invariant for boosts along the beam direction
- small cross-sections for processes with large transverse momentum
 - ▶ most particles created in hadronic collisions have small transverse momenta
- transverse momentum scale set by the uncertainty relation

$$\Delta u \Delta p_u \sim \hbar \quad \text{with} \quad u = x, y$$

- calculate the p_T distribution for gaussian distributions of the components

$$\frac{dn}{dp_u} = \frac{1}{\sqrt{2\pi}\sigma} e^{-p_u^2/2\sigma^2} \quad \sigma = \Delta p_u = \hbar/\Delta u$$

with transformation to polar coordinates ϕ and $q = \sqrt{p_x^2 + p_y^2} \rightarrow$

■ result

$$\begin{aligned}\frac{dn}{dp_T} &= \frac{1}{2\pi\sigma^2} \int dp_x dp_y e^{-(p_x^2 + p_y^2)/2\sigma^2} \delta(p_T - \sqrt{p_x^2 + p_y^2}) \\ &= \frac{1}{2\pi\sigma^2} \int d\phi dq q e^{-q^2/2\sigma^2} \delta(p_T - q) = \frac{1}{\sigma^2} p_T e^{-p_T^2/2\sigma^2}\end{aligned}$$

→ universal (phase space) behaviour $\propto p_T$ for $p_T \rightarrow 0$

■ mean value

$$\langle p_T \rangle = \int_0^\infty dp_T p_T \frac{dn}{dp_T} = \sigma \sqrt{\frac{\pi}{2}} \quad \text{i.e.} \quad \langle p_T \rangle \propto \sigma$$

- ▶ the average transverse momentum is defined size of the particle emitting region
- ▶ localisation Δu determined by the Compton wavelength λ of a particle

$$\sigma \sim \frac{h}{\lambda} \quad \text{with} \quad \lambda = \frac{h}{m} \quad \rightarrow \quad \langle p_T \rangle \sim m$$

→ heavier particles are produced with larger transverse momentum

Remark: arguments using the uncertainty relation ...

- ❖ ... should always be taken with a grain of salt!

- commonly seen:

$$\Delta E \Delta t \geq \hbar$$

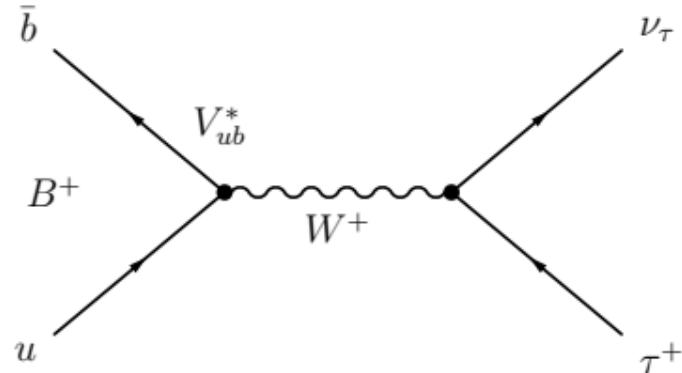
This means that short time intervals energy-conservation can be violated.

Energy can be borrowed and returned as long as the above inequality holds.

- ❖ problematic aspects

- the uncertainty relation holds between operators, but there is no time operator
 - ▶ excuse: relativity tells us that there is a space-time continuum, and if there is an uncertainty relation involving space, there should also be one for time
 - we always emphasize that energy and momentum must be conserved
 - by the above equation indefinite loans should be allowed ...

example: weak decay of $B^+ \rightarrow \tau^+ \nu_\tau$



By means of the uncertainty relation the 5.279-GeV B^+ -particle can briefly borrow the energy to turn into a 80.4-GeV W^+ that decays into the tau and its neutrino

► what we actually do when we calculate the process

- at each vertex the 4-momentum is conserved; energy conservation is never violated
- the W -boson has an invariant mass equal to the B^+ mass
- the uncertainty relation relates to the fact that short lived particles can be off-shell

Lorentz invariant cross-sections

❖ 4-fold differential cross-section

$$\frac{d^4\sigma}{d^4p'} = \frac{d^4\sigma}{d^4p} \left| \frac{\partial p}{\partial p'} \right| = \frac{d^4\sigma}{d^4p} \quad \text{with} \quad d^4p = dp_x \, dp_y \, dp_z \, dE$$

► the differential cross-section is invariant under Lorentz transformations

■ mass constraint for physical particles

$$E^2 - p^2 - m^2 = 0 \quad \text{with} \quad p^2 = p_x^2 + p_y^2 + p_z^2 \quad \text{and} \quad E > 0$$

■ physical 3-fold differential invariant phase-space element

$$dp_x \, dp_y \, dp_z \int dE \, \delta(E^2 - p^2 - m^2) = \frac{dp_x \, dp_y \, dp_z}{2E} \quad \text{with} \quad E = \sqrt{m^2 + p^2}$$

follows from $\int dx \, g(x) \delta(f(x)) = \frac{g(x_0)}{f'(x_0)} \quad \text{with} \quad f(x_0) = 0$

❖ equivalent representations of the Lorentz invariant phase space element

$$\frac{1}{2E} dp_x dp_y dp_z = \frac{1}{2E} p_T dp_T dp_z d\phi = \frac{1}{4E} dp_T^2 dp_z d\phi = \frac{1}{4} dp_T^2 dy d\phi$$

- ▶ the last expression follows because

$$y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z} = \frac{1}{2} \ln \frac{\sqrt{m^2 + p_x^2 + p_y^2 + p_z^2} + p_z}{\sqrt{m^2 + p_x^2 + p_y^2 + p_z^2} - p_z} \quad \text{implies} \quad \frac{dp_z}{E} = dy$$

- particles produced according to phase space, are

- ▶ uniformly distributed in ϕ – symmetry around the beam direction
- ▶ uniformly distributed in y – approximately realized in data
- ▶ uniformly distributed in p_T^2 – true for $p_T \rightarrow 0$

putting things to work →

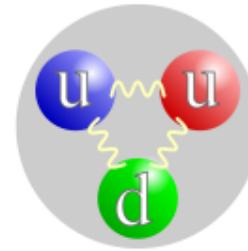
Modelling the structure of hadrons

- global quantum numbers described by the quark model
- (strong) interaction between constituents leads to parton model with valence quarks, gluons and virtual, mostly light, quark-antiquark pairs
- parametrisation by “Parton Density Functions” (PDFs) for each parton-type k

$$\text{parton density: } \rho_k(x) \sim x^{\alpha_k-1} (1-x)^{\beta_k}$$

$$\text{momentum density: } x \rho_k(x) \sim x^{\alpha_k} (1-x)^{\beta_k}$$

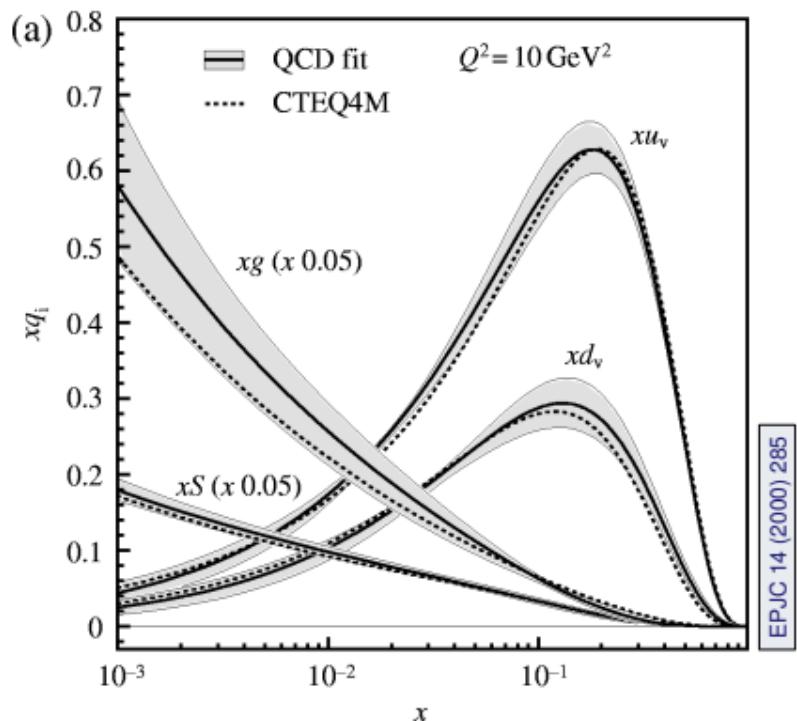
$$\text{momentum conservation: } \sum_k \int_0^1 dx \ x \rho_k(x) = 1$$



source: wikimedia

- $x \in [0, 1]$: 4-momentum fraction carried by a parton
- power-law behaviour at the phase space limits
- $\alpha_k > -1$ needed for normalisation (momentum conservation)

❖ global fit result for parton densities of the proton



- $x \rightarrow 0$: gluon density dominates
- $x \rightarrow 1$: valence quark density dominates

parametrisation for $x \rightarrow 0$:

$$x\rho(x) = A \cdot x^\alpha$$

parton	A	α
gluon	1.32	-0.26
valence quark	1.57	0.63
sea quark	0.14	-0.15

pp collisions at large centre-of-mass energies

- ❖ basic process: collision of two massless & collinear partons

kinematics in pp center of mass

$$E_{1,2} = \frac{\sqrt{s}}{2} x_{1,2} \quad \text{and} \quad p_{1,2} = \pm \frac{\sqrt{s}}{2} x_{1,2}$$

total energy and momentum

$$E = E_1 + E_2 = \frac{\sqrt{s}}{2} (x_1 + x_2) \quad \text{and} \quad p = p_1 + p_2 = \frac{\sqrt{s}}{2} (x_1 - x_2)$$

invariant mass and rapidity of the two-parton system:

$$m^2 = E^2 - p^2 = s x_1 x_2 \quad \text{and} \quad y = \frac{1}{2} \ln \frac{E + p}{E - p} = \frac{1}{2} \ln \frac{x_1}{x_2}$$

phenomenology →

❖ cross-section to create of a system with $M > m$

- reminder: $x_1 x_2 = m^2/s$
- assume small- x scattering and thus that gluon-gluon scattering dominates
- use $m \rightarrow m_\pi$ to estimate the total inelastic cross-section σ_{inel}

$$\begin{aligned}\sigma &\propto \int_0^1 dx_1 \int_0^1 dx_2 \rho(x_1) \rho(x_2) \Theta\left(x_1 x_2 - \frac{m^2}{s}\right) \quad \text{with} \quad \rho(x) \propto x^{\alpha-1}, \alpha < 0 \\ &= \int_{m^2/s}^1 dx_1 x_1^{\alpha-1} \int_{m^2/sx_1}^1 dx_2 x_2^{\alpha-1} \\ &= \frac{1}{\alpha^2} + \frac{1}{|\alpha|} \left(\frac{s}{m^2}\right)^{|\alpha|} \left(1 + \ln \frac{s}{m^2}\right) \quad \rightarrow \quad \sigma \sim \left(\frac{s}{m^2}\right)^{|\alpha|} \ln \frac{s}{m^2} \quad \text{for} \quad m \rightarrow m_\pi\end{aligned}$$

- ▶ growth of gluon density for $x \rightarrow 0$ leads to growth of σ_{inel} with s
- ▶ dominated by power-law term

- ❖ rapidity distribution of particles with mass m produced in gg collisions

$$\frac{d\sigma}{dy} \propto \int_0^1 dx_1 \int_0^1 dx_2 \rho(x_1) \rho(x_2) \delta\left(y - \frac{1}{2} \ln \frac{x_1}{x_2}\right) \delta\left(x_1 x_2 - \frac{m^2}{s}\right)$$

- result from integration over δ -functions:

$$\frac{d\sigma}{dy} \propto \rho(x_1) \rho(x_2) \quad \text{with} \quad x_1 = \frac{m}{\sqrt{s}} e^y \quad \text{and} \quad x_2 = \frac{m}{\sqrt{s}} e^{-y}$$

- explicit form for $\rho(x) \propto x^{\alpha-1} (1-x)^\beta$ with $\alpha < 0$, $\beta > 0$

$$\frac{d\sigma}{dy} \propto \left(\frac{s}{m^2}\right)^{|\alpha|+1-\beta/2} \left(1 - \frac{\cosh y}{\cosh y_m}\right)^\beta \quad \text{with} \quad y_m = \ln \frac{\sqrt{s}}{m}$$

- ▶ uniform distribution in the center
- ▶ power-law growth with energy of density and thus of final state particle multiplicity

❖ exercise: show that

$$\int_0^1 dx_1 \int_0^1 dx_2 \rho(x_1) \rho(x_2) \delta\left(y - \frac{1}{2} \ln \frac{x_1}{x_2}\right) \delta\left(x_1 x_2 - \frac{m^2}{s}\right) \propto \rho\left(\frac{m}{\sqrt{s}} e^y\right) \rho\left(\frac{m}{\sqrt{s}} e^{-y}\right)$$

straightforward calculation shows that for

$$x_1 = \frac{m}{\sqrt{s}} e^y \quad \text{and} \quad x_2 = \frac{m}{\sqrt{s}} e^{-y}$$

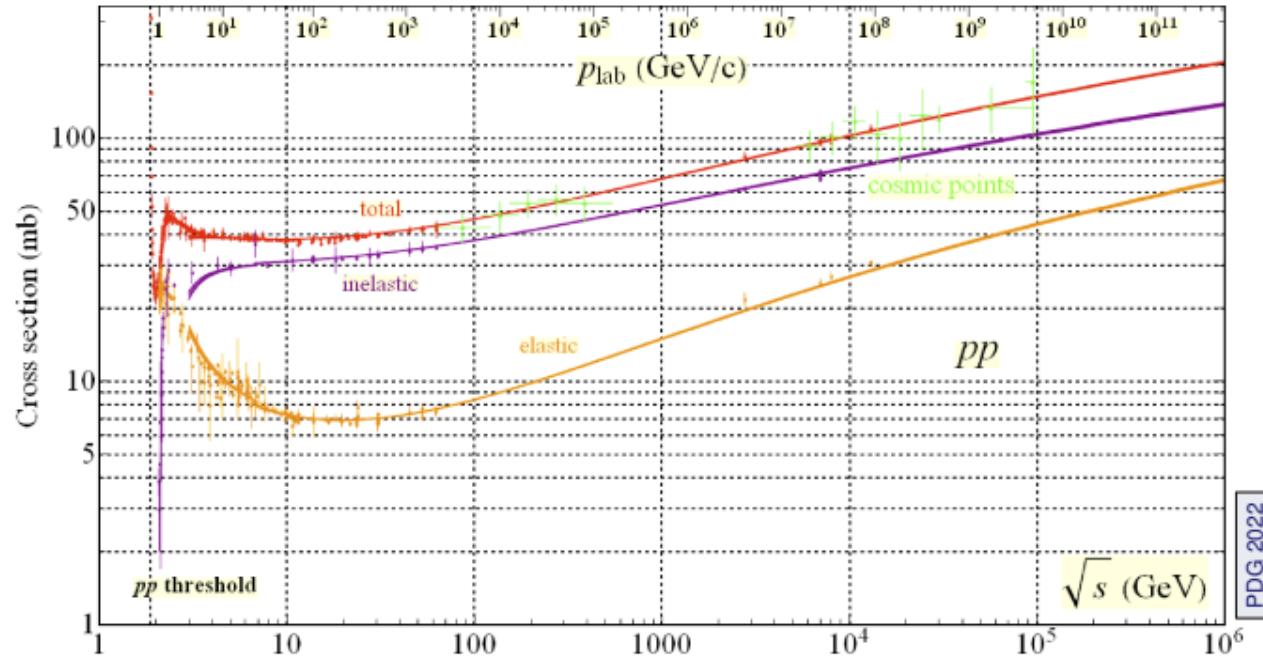
the arguments to both delta-functions are zero. It remains to consider the derivatives of the arguments to the delta functions. Using the integral over x_1 (x_2) to get rid of the first (second) delta function one picks up the jacobians

$$\left| \frac{d}{dx_1} \left(y - \frac{1}{2} \ln \frac{x_1}{x_2} \right) \right| = \frac{1}{2x_1} \quad \text{and} \quad \left| \frac{d}{dx_2} \left(x_1 x_2 - \frac{m^2}{s} \right) \right| = x_1$$

The product is constant, which proves the proposition.

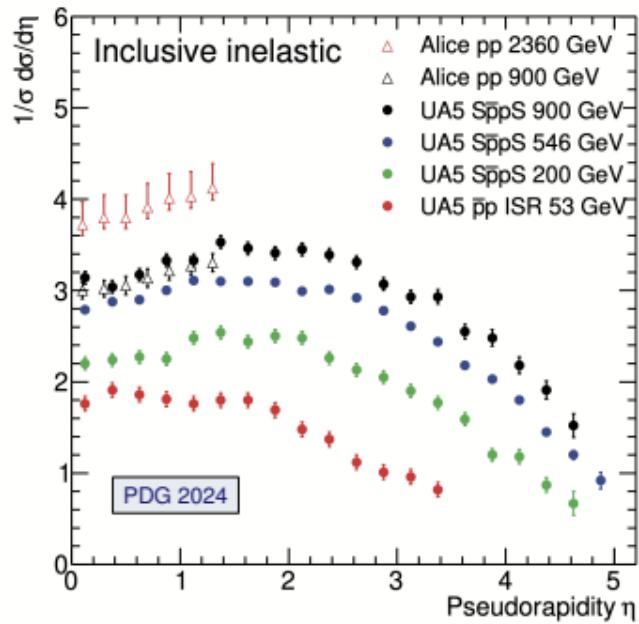
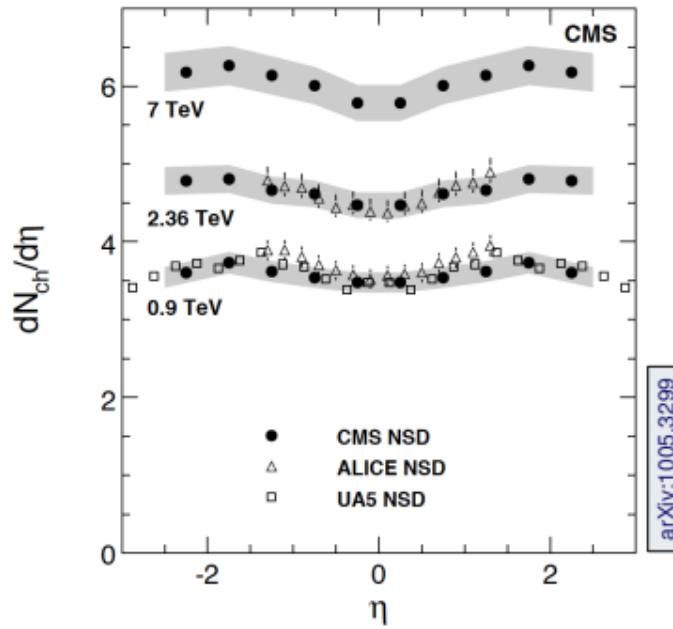
Experimental findings

❖ total inelastic pp cross-section



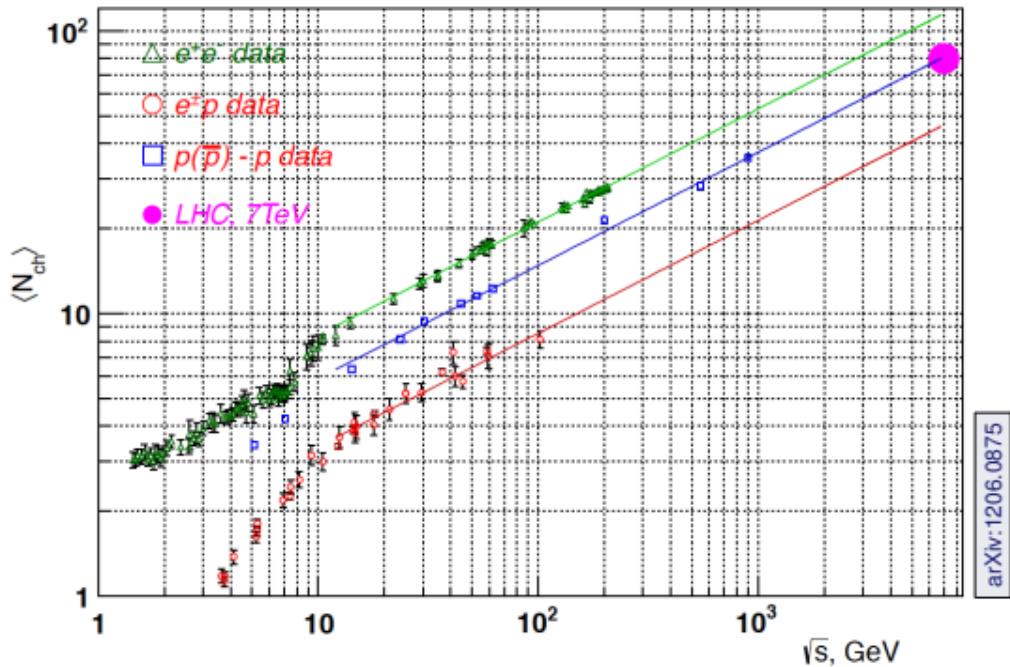
→ energy dependence at high energies can be described by a power-law

❖ (pseudo) rapidity distributions



- pseudorapidity used as a proxy for rapidity
- $dn/d\eta < dn/dy$ in the central region because of mass effects
 - approximately uniform rapidity distribution in the central region

❖ total charged-particle multiplicities



- universal power laws
- fit for $\sqrt{s} > 11$ GeV

$$\langle n_{ch} \rangle = N_0 \left(\frac{s}{m_p^2} \right)^{1/5}$$

- ▶ $N_0(pp, p\bar{p}) = 2.32$
- ▶ $N_0(e^\pm p) = 1.32$
- ▶ $N_0(e^+e^-) = 3.32$

- ▶ universal phenomenology in multi-particle production
- ▶ qualitative understanding relatively simple

Hadronic interactions in a nutshell

❖ nucleon-nucleon center-of-mass energy

collider: $\sqrt{s_{NN}} = 2E_{\text{beam}}$

fixed target: $\sqrt{s_{NN}} = \sqrt{2E_{\text{beam}} m_N}$

► $\sqrt{s_{NN}} = 10 \text{ TeV } pp \text{ at LHC} \Leftrightarrow E_{\text{beam}} = 5 \cdot 10^7 \text{ GeV CR protons on earth}$

❖ rule-of-thumb bulk properties of hadronic interactions

- exponential spectrum $\propto p_T \exp(-ap_T)$ with $\langle p_T \rangle = \mathcal{O}(0.4) \text{ GeV}$
- uniform (pseudo)rapidity ($\eta \approx y$) distribution with $\mathcal{O}(10)$ particles/unit
- ranges covered

collider: $y \in [-y_{\text{max}}, +y_{\text{max}}]$ fixed target: $y \in [0, 2y_{\text{max}}]$ with $y_{\text{max}} = \ln \frac{\sqrt{s_{NN}}}{m_N}$

► e.g. $y_{\text{max}}(10 \text{ TeV}) = 9.2$ and $y_{\text{max}}(100 \text{ GeV}) = 4.6$

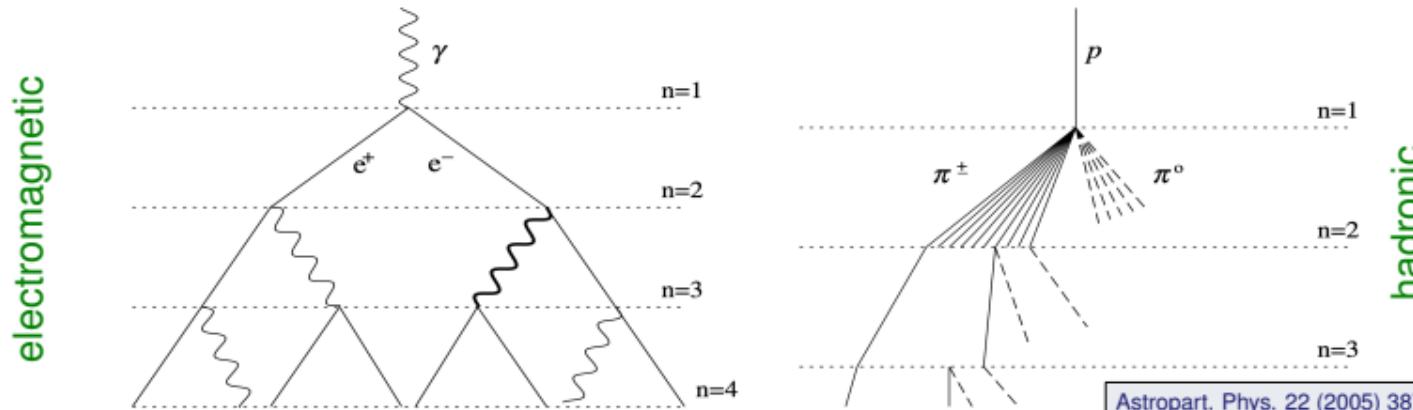
► weak center-of-mass dependency of particle density

Beyond soft QCD – heavy flavours

- production cross-sections increase at high energies
 - ▶ heavy flavours contribute a larger share of the total particle production
- contribution to large p_T processes in EAS
 - ▶ understanding of lateral extent of air showers
 - ▶ extra contributions to high-energy neutrinos
- phenomenology with large CP-asymmetries
 - ▶ help understanding the baryon-asymmetry of the universe
- heavy long-lived quarks are ideal tracers in hot QCD media
 - ▶ melting of bound states in QGP
 - ▶ probing differences between free nucleons and nuclear matter
- more reliable theoretical calculations
 - ▶ better sensitivity to New Physics

3 Air Showers and the Muon Puzzle

❖ Heitler/Mattews-type toy models for extensive air showers



- branchings after splitting length $\lambda_r \ln 2$
 - ▶ $\gamma \rightarrow e^+ e^-$
 - ▶ $e^\pm \rightarrow \gamma e^\pm$
- equal sharing of energy in all branchings
- termination when $E < E_c^r$
- branchings after interaction length λ_I
 - ▶ $h \rightarrow M(\pi^+ \pi^- \pi^0)$ with $M = 5$
 - ▶ EM sub-cascades from $\pi^0 \rightarrow \gamma\gamma$
- equal sharing of energy in all processes
- termination when $E < E_c^h$
 - ▶ pions decay to muons

❖ predictions of the toy model for a primary photon of energy E_0

- number of final state particles N

$$N = \frac{E_0}{E_c^r}$$

- number of splittings n

$$N = 2^n \quad \text{and thus} \quad n = \frac{\ln N}{\ln 2} = \frac{\ln E_0/E_c^r}{\ln 2}$$

- depth of the shower maximum

$$X_{\max} = n \lambda_r \ln 2 = \lambda_r \ln \frac{E_0}{E_c^r}$$

- ▶ the number of produced particles is proportional to the primary energy E_0
- ▶ the depth of shower maximum grows proportional to $\ln E_0$

❖ predictions of the toy model for a primary hadron of energy E_0

- total number of pions after n branchings

$$N_n = (2M)^n$$

- total energy carried by pions and energy E_n per pion

$$N_n E_n = \left(\frac{2}{3}\right)^n E_0 \quad \text{and thus} \quad E_n = \left(\frac{2}{3}\right)^n \frac{1}{(2M)^n} E_0$$

- number of branchings until shower maximum

$$E_c^h = E_n = \left(\frac{1}{3M}\right)^n E_0 \quad \text{and thus} \quad n = \frac{\ln E_0/E_c^h}{\ln 3M} \quad \text{at} \quad X_{\max} = n\lambda_I$$

- number of muons

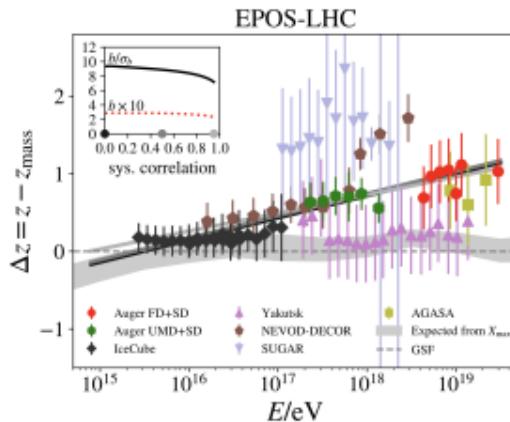
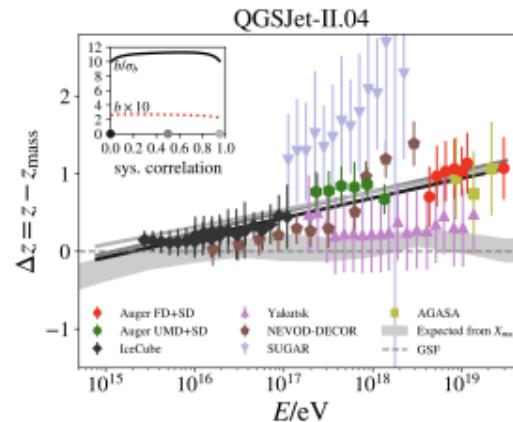
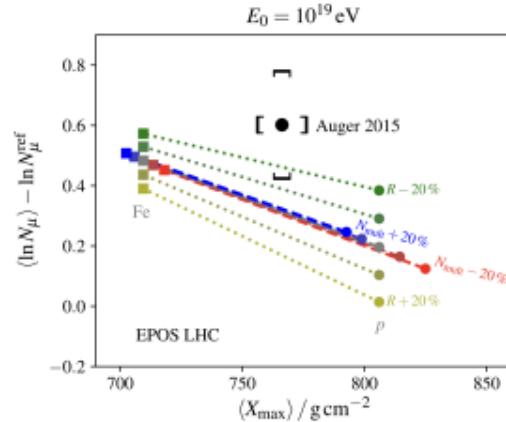
$$N_\mu = N_n = (2M)^{\frac{\ln E_0/E_c^h}{\ln 3M}} = \left(\frac{E_0}{E_c^h}\right)^{\frac{\ln 2M}{\ln 3M}} \underset{M=5}{\approx} \left(\frac{E_0}{E_c^h}\right)^{0.85}$$

❖ findings

- qualitatively similar behaviour for electromagnetic and hadronic showers
- accurate prediction of muon flux requires understanding of
 - ▶ chemical composition of primary cosmic rays
 - ▶ hadronic interaction length λ_I
 - ▶ final states multiplicities
 - ▶ energy fraction into electromagnetic cascades
- input from particle physics
 - ▶ inelastic cross-sections $\sigma_{\text{inel}}(E)$ for pp, pA, AA interactions
 - ▶ number and types of produced particles
 - ▶ kinematics
 - ▶ nuclear modification factors

The Muon Puzzle

- ❖ discrepancy between expected and measured muon flux in air showers



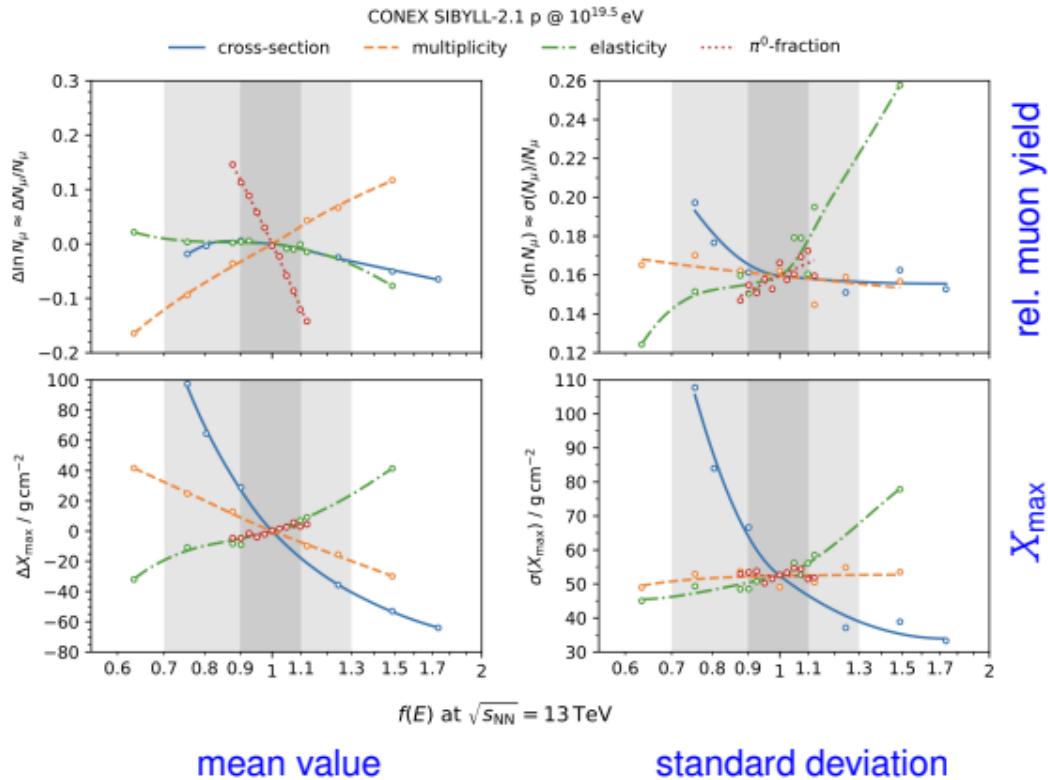
compare normalized muon yield:

$$z = \frac{\ln \langle N_\mu \rangle - \ln \langle N_\mu \rangle_p^{MC}}{\ln \langle N_\mu \rangle_{Fe}^{MC} - \ln \langle N_\mu \rangle_p^{MC}}$$

- ▶ works for any experimental measure of N_μ
- ▶ MC accounts for different experimental conditions
- ▶ normalization handles composition dependence

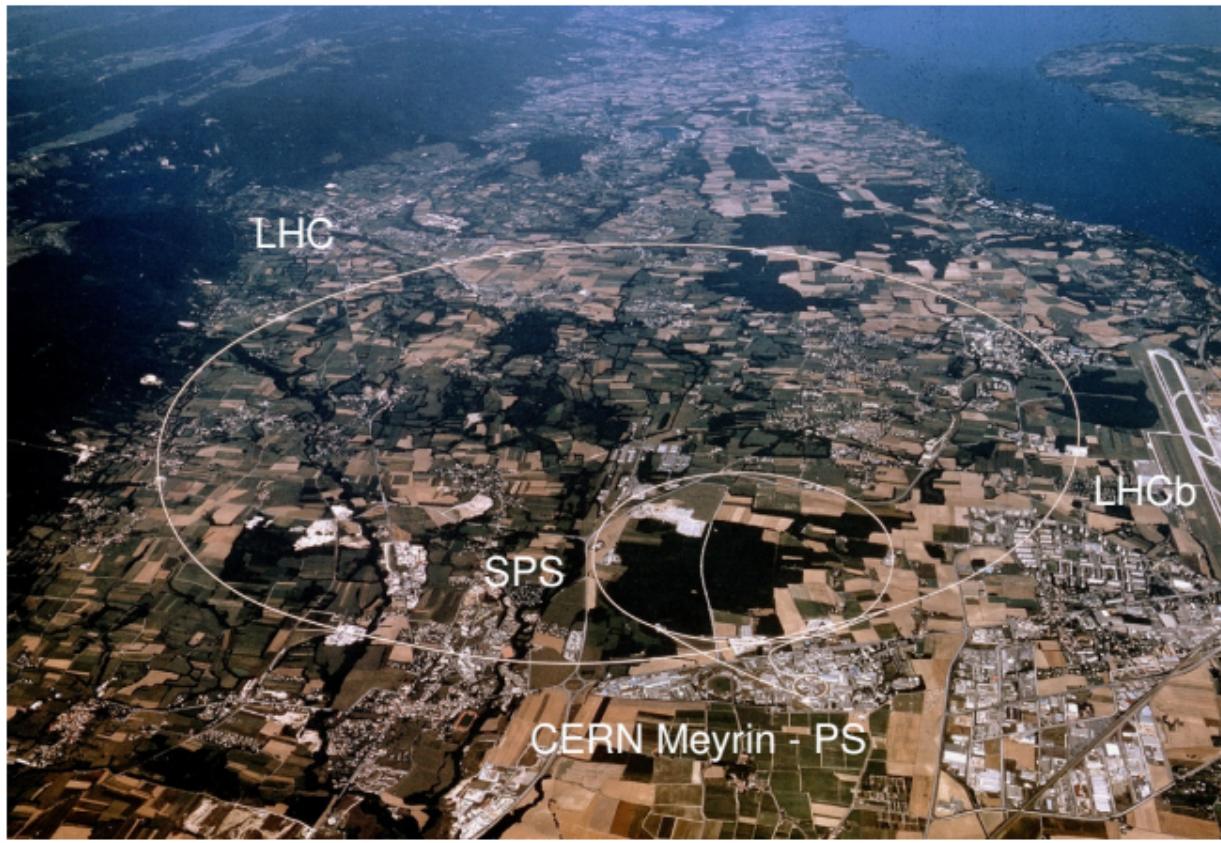
→ at high energies all models predict to few muons

❖ sensitivity studies

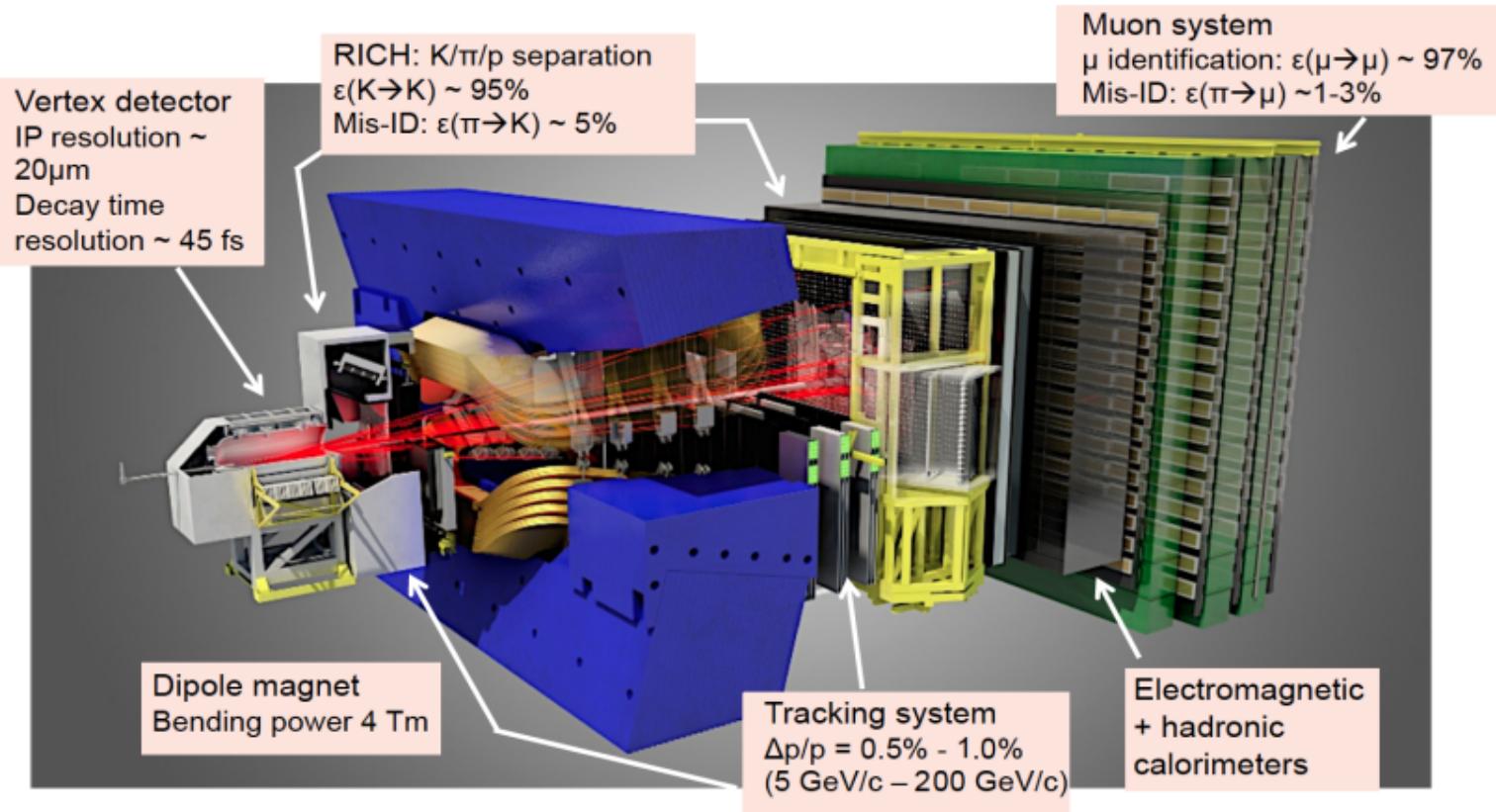


- ▶ vary model parameters adjusted at $\sqrt{s} = 13$ TeV
- ▶ predict N_μ and X_{\max} at $\sqrt{s} = 10^{7.5}$ TeV
- ▶ X_{\max} driven by σ_{inel}
- ▶ N_μ rises with multiplicity and drops with EM fraction

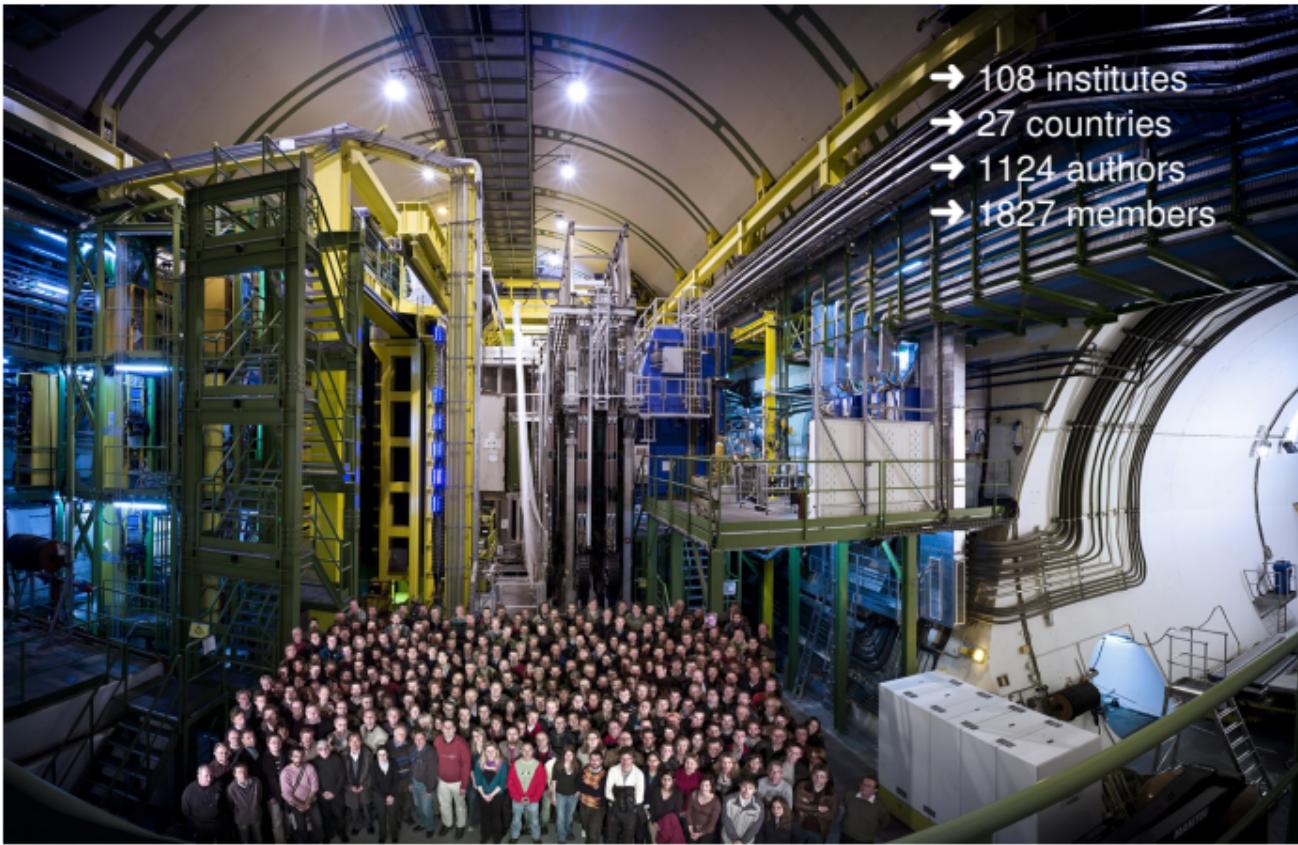
4 Contributions by LHCb



The Run 1 / Run 2 LHCb detector

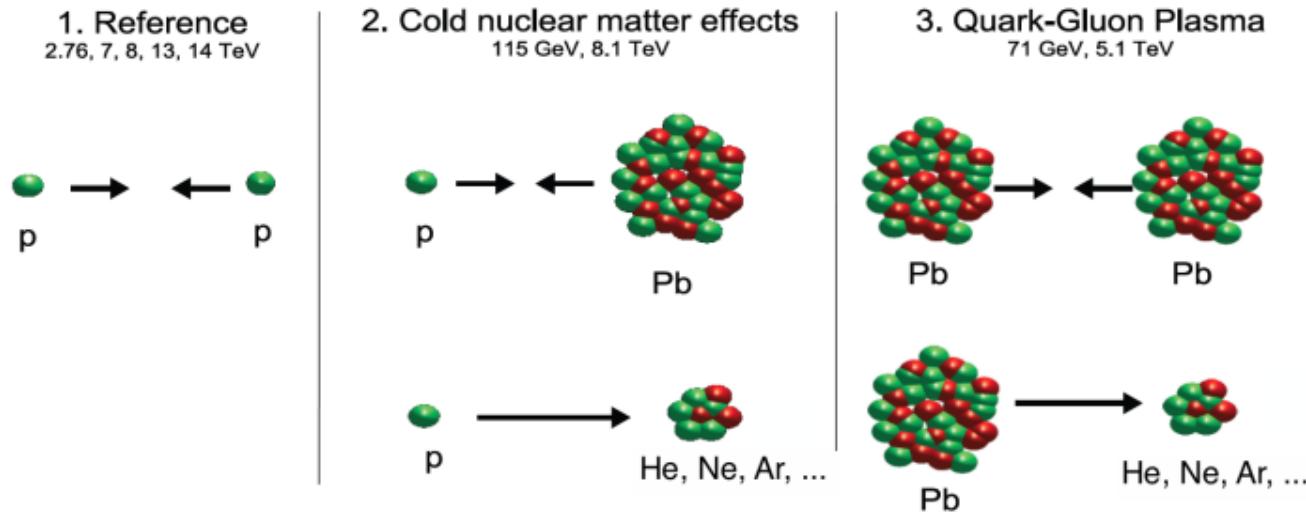


The LHCb collaboration

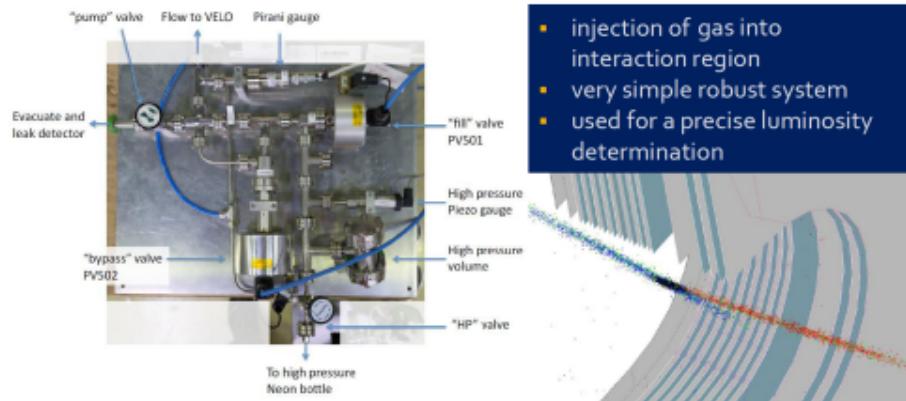
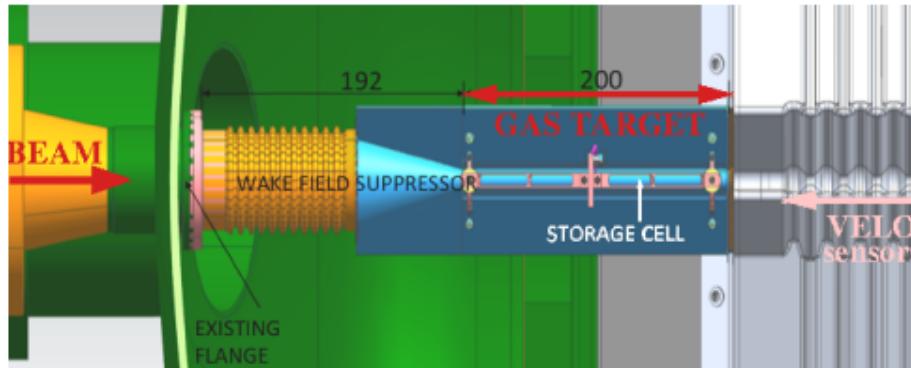


LHCb beam configurations

- ❖ possibility to study hadronic collisions...
 - as a function of the centre-of-mass energy
 - for different combinations of collision partners
 - colliding beam and fixed target mode



Fixed target mode – the SMOG systems



❖ initial setup

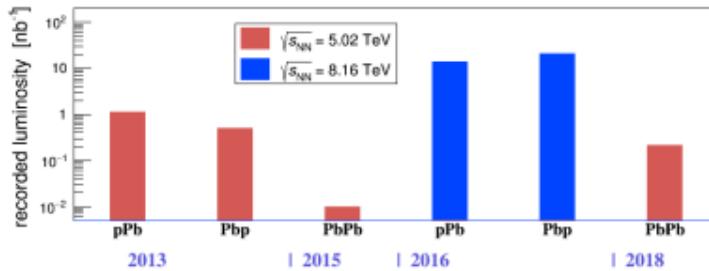
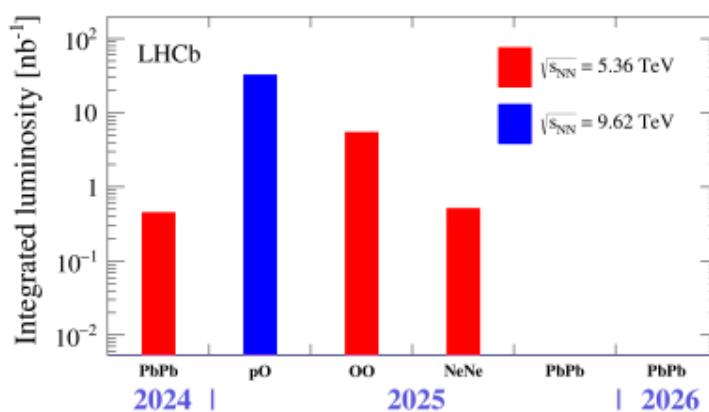
- beam-gas imaging for luminosity measurement
- inject noble gases into VELO
- pressure $O(10^{-7})$ mbar

❖ SMOG2

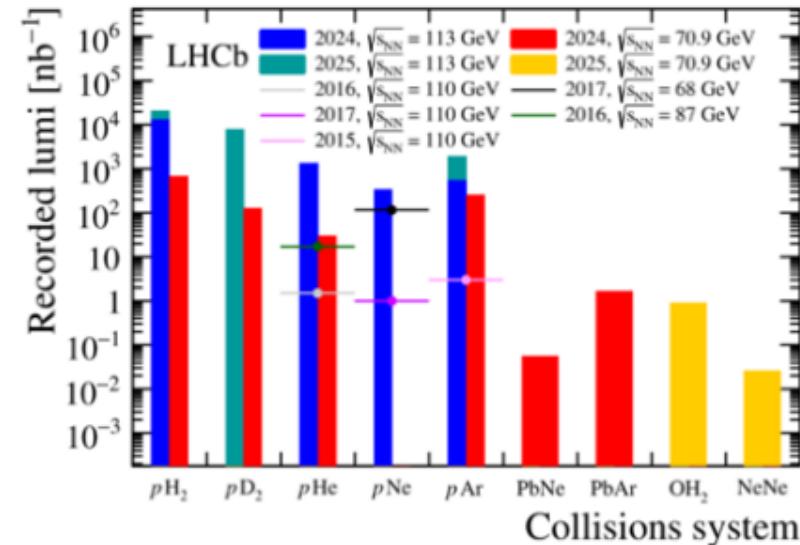
- dedicated storage cell
- $O(100)$ times higher pressure
- joint running with collider mode

Data sets

❖ collider mode ion physics



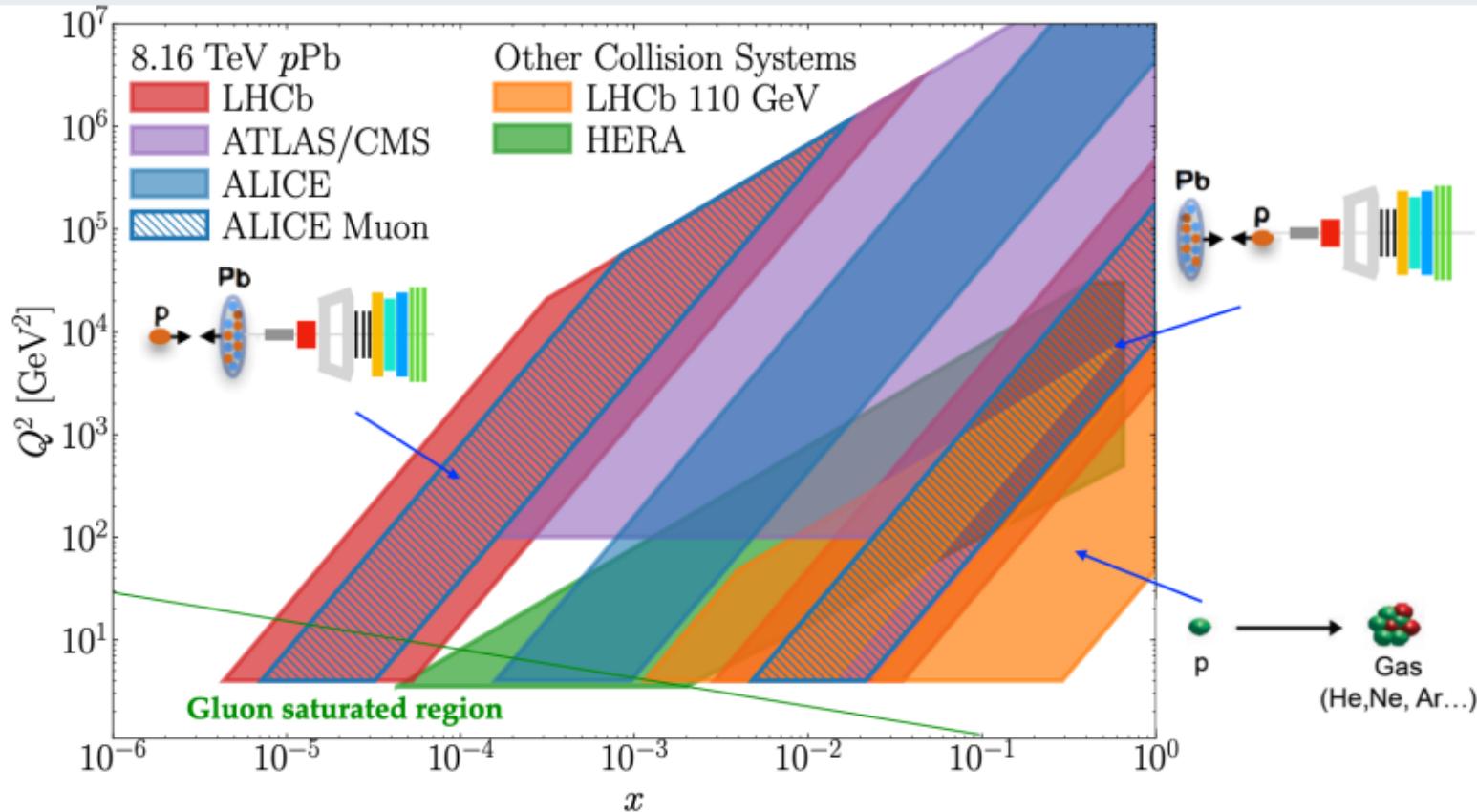
❖ fixed target mode ion physics



❖ collider mode pp physics

0.9, 2.76, 5, 7, 8, 13, 13.6 TeV

Probing the structure of a nucleon inside a nucleus



Some selected results

- basic measurements of multi-particle production
 - ▶ inelastic cross-section
 - ▶ inclusive particle production cross-sections
 - ▶ multiplicities
 - ▶ hadronization studies
- probing the structure of the nucleon, the nucleus, and the nucleon inside a nucleus
 - ▶ nuclear modification factors in pA collisions
 - ▶ probing nuclear shapes in ion-ion collisions
- specific measurements
 - ▶ antimatter production in light ion collisions

Measurement of the inelastic pp cross-section

- fiducial cross-section σ_{acc} at $\sqrt{s} = 13 \text{ TeV}$
 ≥ 1 long-lived prompt charged particle with $p > 2 \text{ GeV}$ and $2 < \eta < 5$
produced directly in the interaction or from decays of short-lived ancestors
with “short-lived” defined as $\tau < 30 \text{ ps}$

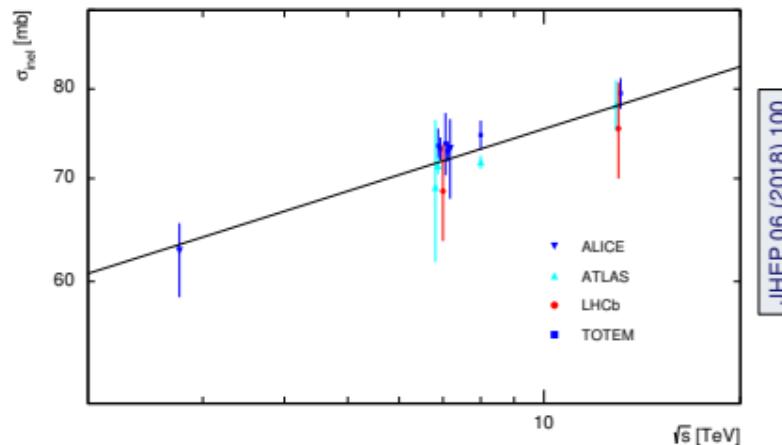
$$\sigma_{\text{acc}} = 62.2 \pm 0.2 \pm 2.5 \text{ mb}$$

- extrapolation to full phase space

$$\sigma_{\text{inel}} = 75.4 \pm 3.0 \pm 4.5 \text{ mb}$$

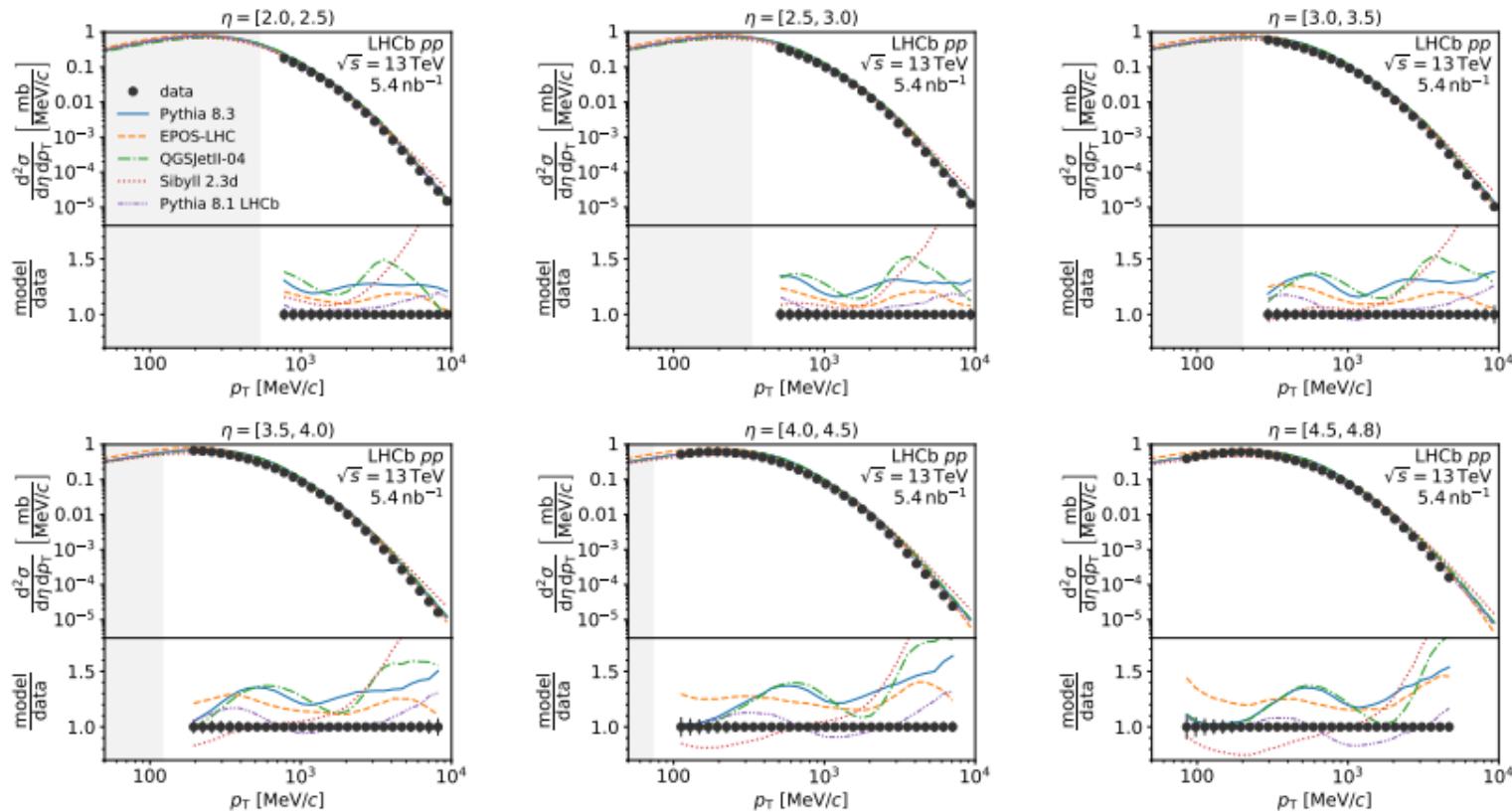
- dominant uncertainties

- ▶ systematics
- ▶ luminosity
- ▶ extrapolation

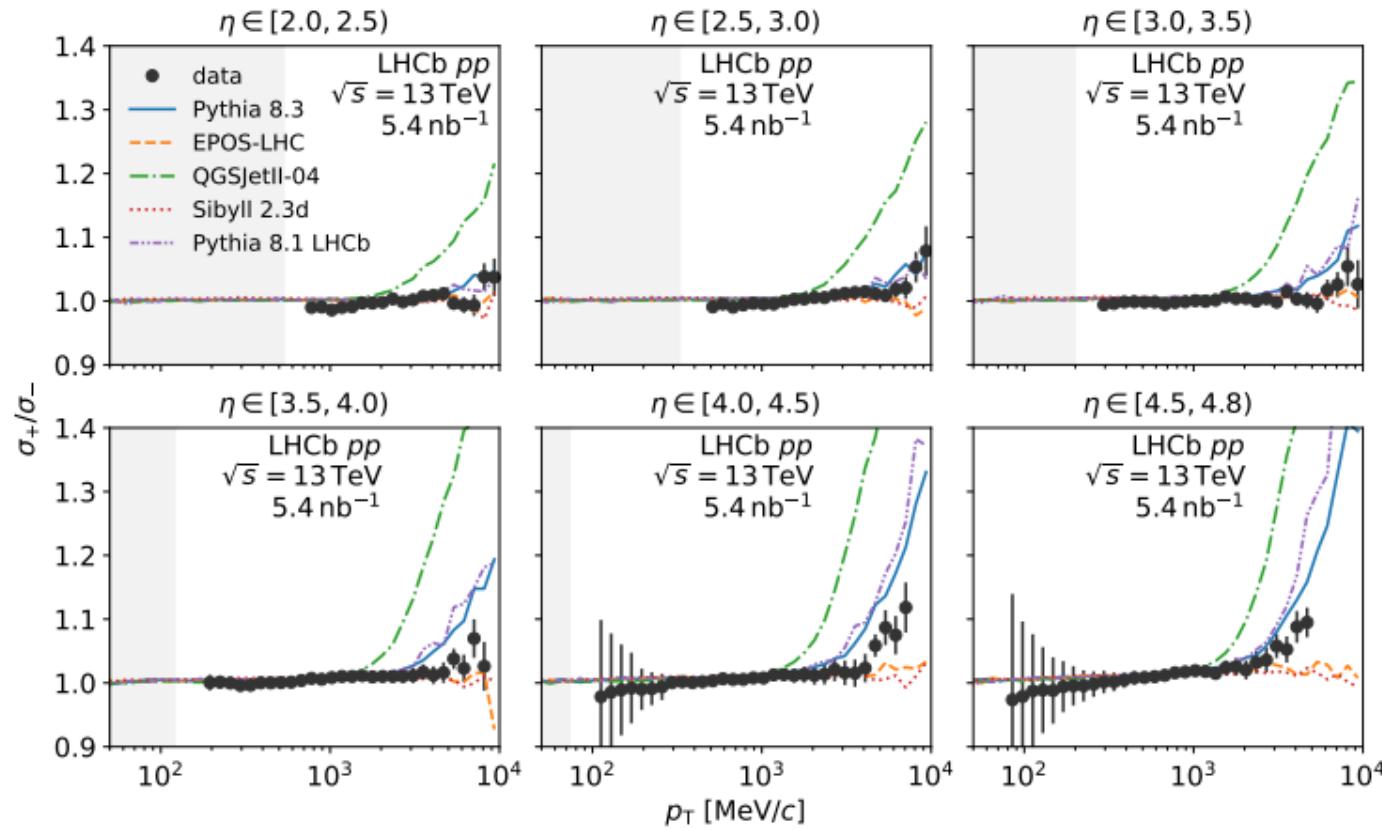


LHC results with a power-law fit

Inclusive charged particle production cross-sections $\sqrt{s} = 13$ TeV



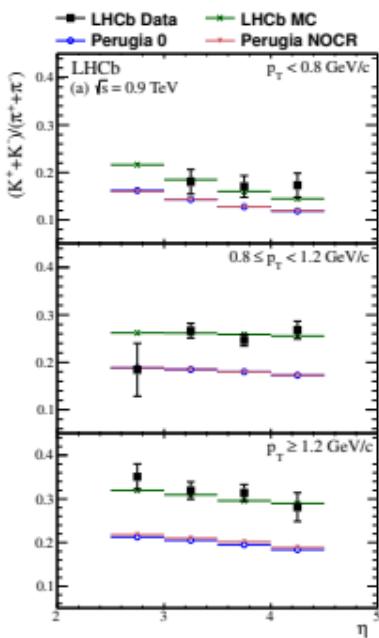
Charge ratios at $\sqrt{s} = 13$ TeV



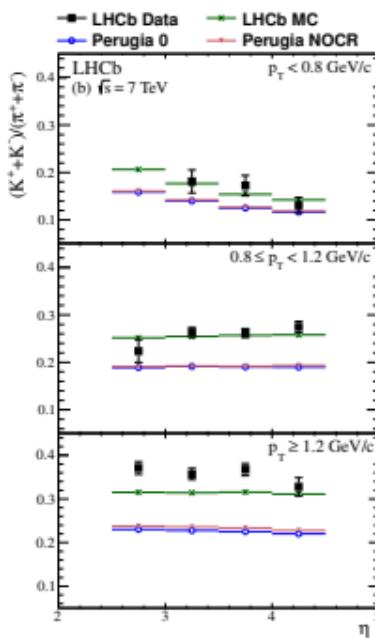
Strangeness and baryon suppression at $\sqrt{s} = 0.9$ and 7 TeV

$$(K^+ + K^-)/(\pi^+ + \pi^-)$$

$$\sqrt{s} = 0.9 \text{ TeV}$$

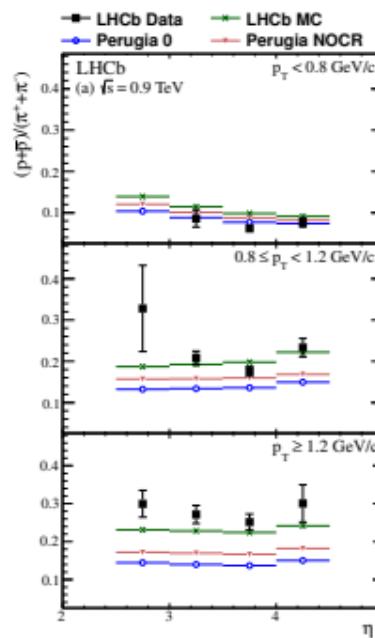


$$\sqrt{s} = 7 \text{ TeV}$$

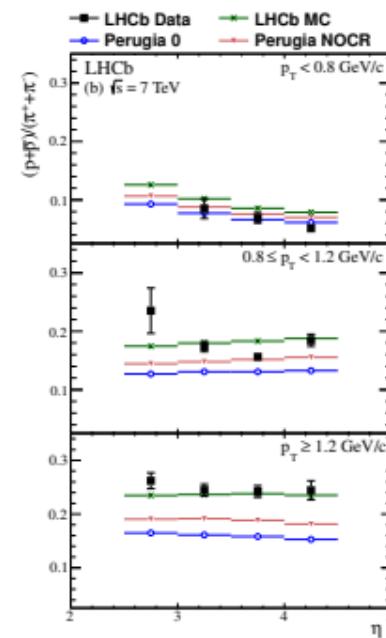


$$(\bar{p} + p)/(\pi^+ + \pi^-)$$

$$\sqrt{s} = 0.9 \text{ TeV}$$

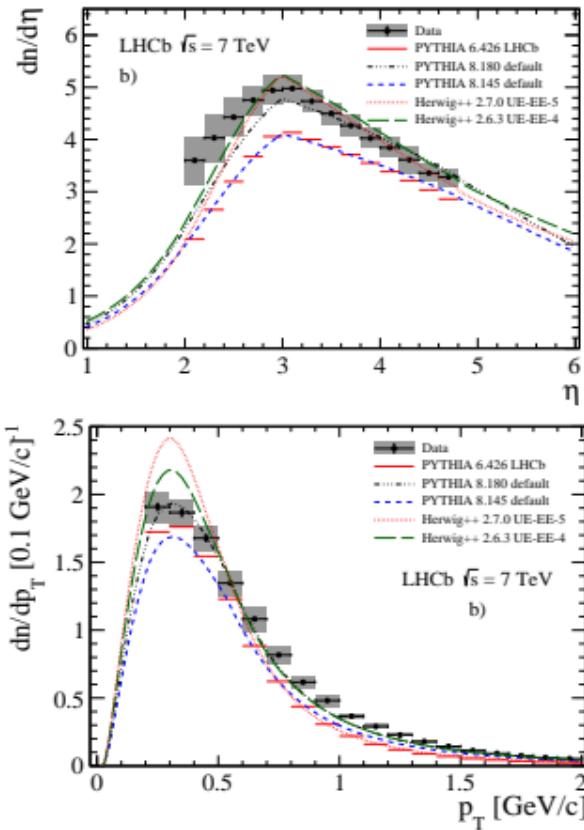
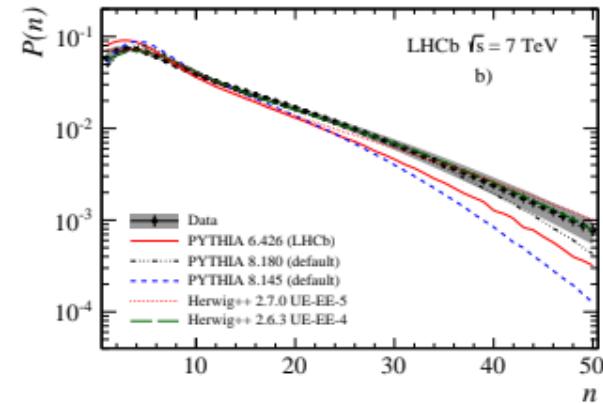


$$\sqrt{s} = 7 \text{ TeV}$$



→ LHCb MC based on Pythia 6 works best

Particle densities and multiplicity distribution at 7 TeV



Eur.Phys.J. C27 (2012) 1947

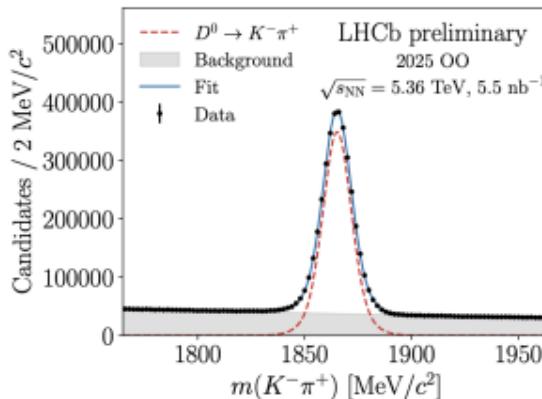
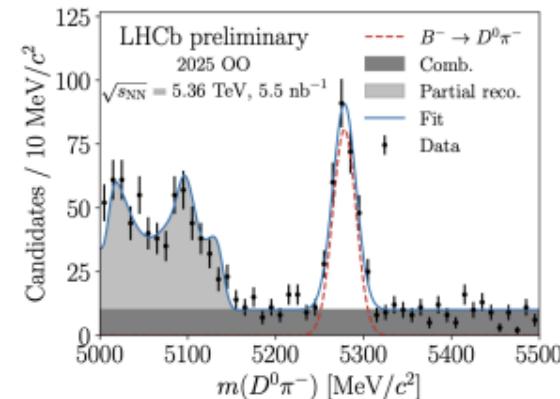
► charged particles

$p_T > 0.2 \text{ GeV}$, $p > 2 \text{ GeV}$, $2.0 < \eta < 4.8$
produced directly or from decays of
ancestors with $\sum \tau < 10 \text{ ps}$

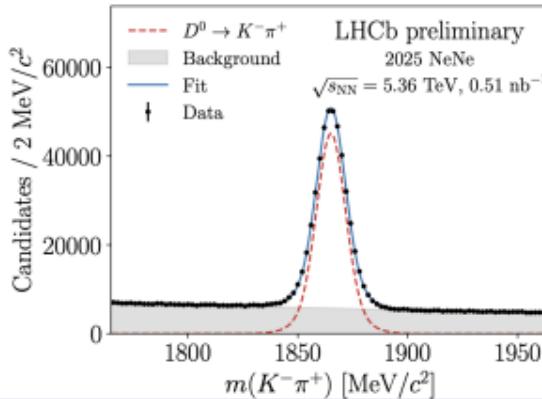
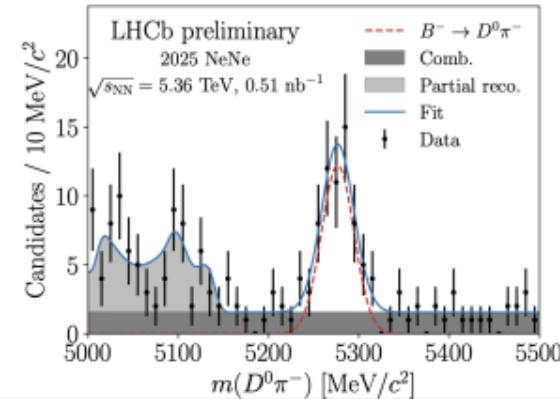
- none of the models is perfect
- satisfactory modelling by PYTHIA8 and Herwig++

Heavy flavour production in ion-ion collisions

OO



NeNe

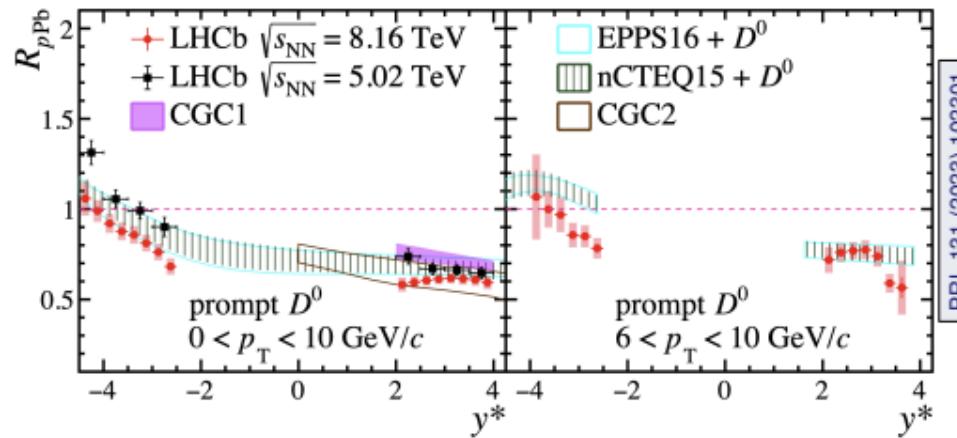


LHCb-FIGURE-2025-017

Probing nuclear PDFs by nuclear modification factors

- ❖ compare pp and pA collisions

$$R_{pA} = \frac{1}{A} \cdot \frac{d\sigma_{pA}/dy^*}{d\sigma_{pp}/dy^*}$$



■ sensitivity to x

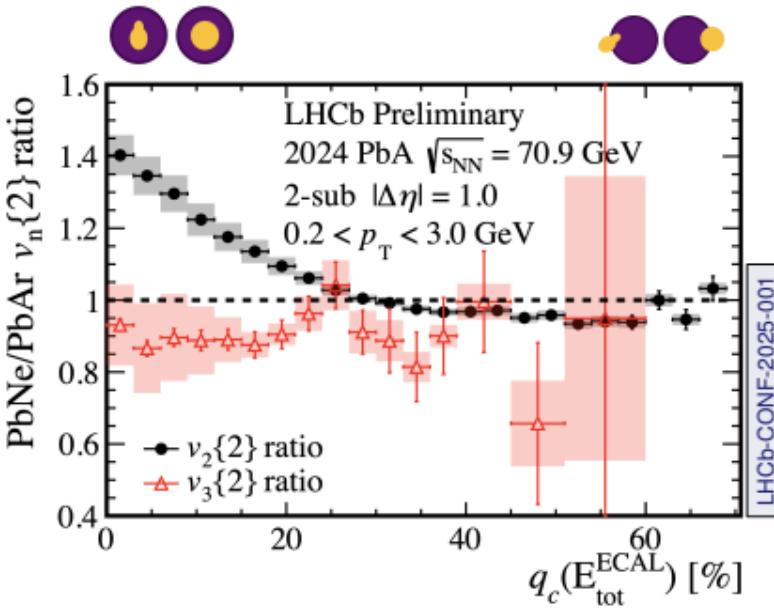
$$x_{1,2} \sim e^{\pm y^*} \frac{M}{\sqrt{s}}$$

- ▶ M : mass of heavy system created in a collision
- ▶ y^* : center-of-mass rapidity
- ▶ less dilution of sensitivity to x due to fragmentation and decays for heavy particles

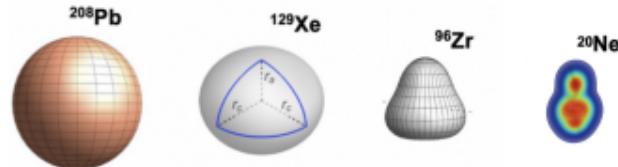
Probing nuclear shapes

❖ study collisions of a Pb beam on Ar/Ne nuclei at rest

- transverse flow of secondary particles depends on overlap of shapes
 - ▶ central collisions: shape affects the flow pattern
 - ▶ peripheral collisions: universal flow pattern



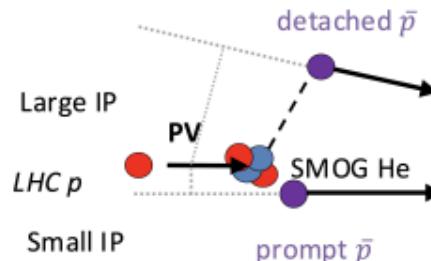
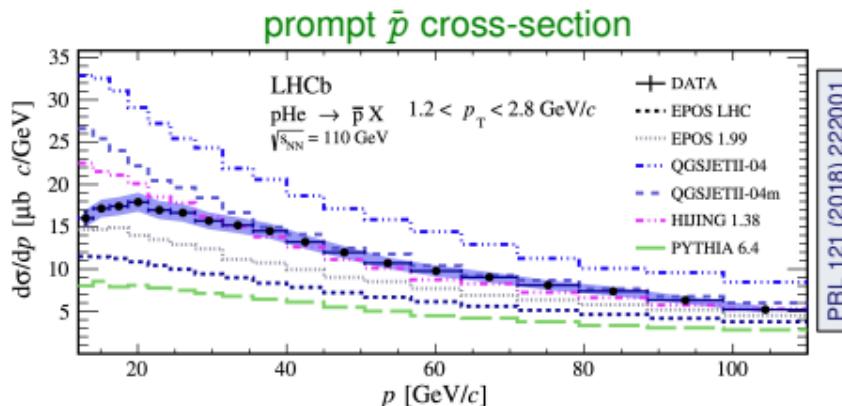
- study Fourier coefficients of transverse flow
 - ▶ Pb and Ar: round nuclei
 - ▶ Ne: bowling-pin shape
- results match theoretical expectation



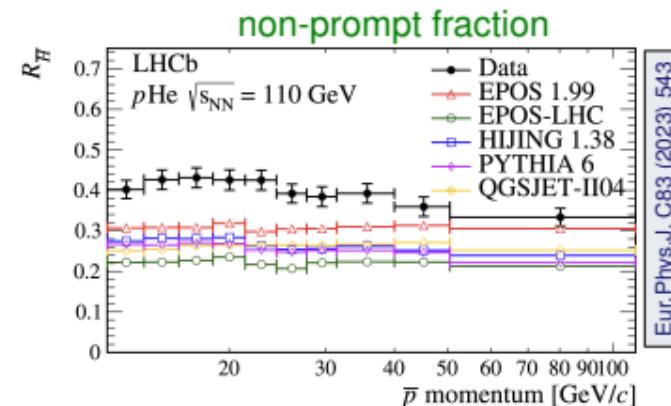
Antiproton production in pHe collisions at $\sqrt{s_{NN}} = 110 \text{ GeV}$

► distinguish prompt and non-prompt contributions by impact parameter (IP)

- PID-system to identify antiprotons
- cross-section normalization from pe scattering
- direct measurement of prompt component
- template fit of IP distribution for non-prompt \bar{p}



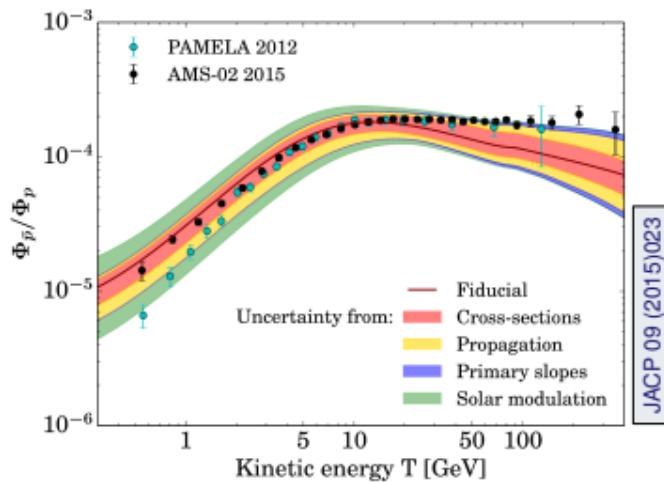
→ large reduction in uncertainty



→ all models too low

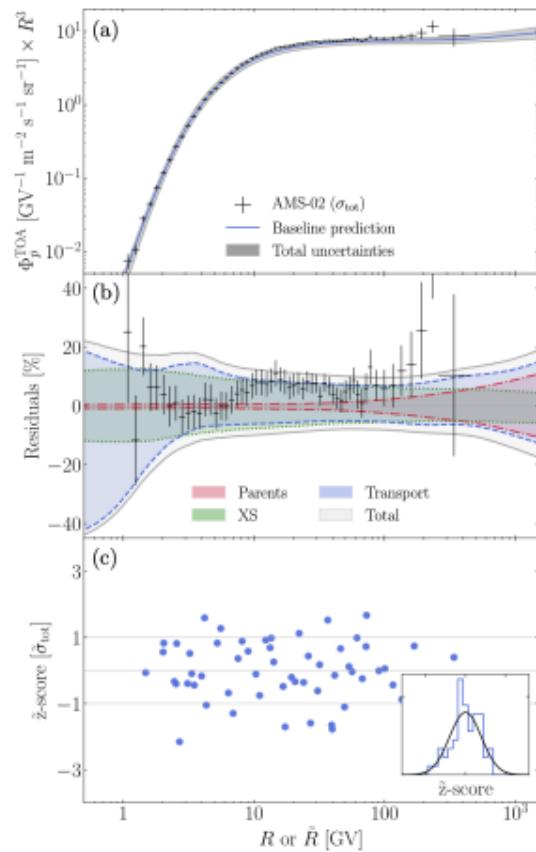
Impact on cosmic ray physics

initial prediction of AMS-02 \bar{p}/p flux ratio



improved model →

- ▶ tension with Standard Model reduced
- ▶ uncertainty still dominated by cross-section
- ▶ new input expected from pH and pD data



5 Summary

- ❖ particle and cosmic ray physics are two sides of the same medal
 - accelerator based particle physics benefits from controlled conditions
 - cosmic rays probes the entire phase space
 - many particle physics results are directly relevant for astroparticle physics
 - ▶ understanding the propagation of CR particles
 - ▶ understanding hadronic interactions in CR induced air-showers (“Muon puzzle”)
 - details of hadronic interactions are intricate but qualitative properties are simple

→ further reading

A Heitler model of extensive air showers,

Astroparticle Physics 22 (2005) 387, <https://doi.org/10.1016/j.astropartphys.2004.09.003>

The Muon Puzzle in cosmic-ray induced air showers and its connection to the LHC,

Astrophysics and Space Science 3 (2022) 367, <https://doi.org/10.1007/s10509-022-04054-5>

Global tuning of hadronic interaction models with accelerator-based and astroparticle data,

Nature Reviews Physics 2025, <https://doi.org/10.1038/s42254-025-00897-3>