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More than 99% of the visible
matter in the Universe is in
the plasma state:

e Stars

e Stellar winds

* Planetary
magnetospheres

* Interstellar/intergalactic
medium

* Intracluster medium

* Accretion discs

(NASA SDO; Zhuravleva et al., 2019; EHT Coll.; NASA)
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A brief introduction to basic plasma physics



What is a plasma?

A plasma is a quasi-neutral gas of charged (and neutral)
particles that exhibits collective behaviour.

Quasi-neutrality: The high mobility of charged particles ensures that charge
imbalances remain small: n,, = n, in a proton-electron plasma

Collective behaviour: Behaviour depends not only on local conditions but on
remote regions as well (the potentials of individual charges are shielded).

Many plasmas are collisionless: binary Coulomb collisions between particles are
negligible compared to collective interactions.




How do we describe plasmas?

Plasma physics is “just” a combination of electromagnetism and statistical
mechanics.

Particles evolve according to the Lorentz force

dt dt  my c

and the electromagnetic fields evolve according to Maxwell’s equations
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How do we describe plasmas?

The main problem is self-consistency: charged particles react to electromagnetic
fields, and the fields react to the charged particles and their motion.

We must treat the plasma as a statistical ensemble of charged particles.

The velocity distribution function f;(r, v, t)
captures the state of the plasma particles.

It evolves according to the Vlasov equation:
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How do we describe plasmas?

The main problem is self-consistency: charged particles react to electromagnetic
fields, and the fields react to the charged particles and their motion.

We must treat the plasma as a statistical ensemble of charged particles.

The velocity distribution function f;(r, v, t)
captures the state of the plasma particles.

lts moments describe the bulk properties
of the plasma:
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How do we describe plasmas? &

(Almost) all of collisionless plasma physics is described by the following set of
equations:
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How do we describe plasmas? 4

i

(Almost) all of collisionless plasma physics is described by the following set of
equations:

Statistical
" mechanics

Electromagnetism



How do we describe plasmas?

By integrating the Vlasov equation and making assumptions (large scales, slow
time evolution, neglect of high-order moments, infinite conductivity), we arrive at
the magnetohydrodynamic (MHD) approximation:

dp
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How do we describe plasmas?

By integrating the Vlasov equation and making assumptions (large scales, slow
time evolution, neglect of high-order moments, infinite conductivity), we arrive at
the magnetohydrodynamic (MHD) approximation:
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These equations correspond to the classical hydrodynamic equations with (self-
consistent)[electromagnetic interactions.]




Stellar winds



Parker’s models for stellar winds and the interplanetary magnetic field

Start with the MHD momentum equation, including gravity:

G, 1
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Parker’s models for stellar winds and the interplanetary magnetic field

Start with the MHD momentum equation, including gravity:

G, 1
p(a%—U-V)U——VP%—E[(VxB)><B]—,o

Assume steady-state conditions, spherical symmetry, and neglect Lorentz force:

ou, 0P GMg
PUr or  Or r2




Parker’s models for stellar winds and the interplanetary magnetic field

Start with the MHD momentum equation, including gravity:

0 1
p(a%—U-V)U——VP%—E[(VxB)><B]—

Assume steady-state conditions, spherical symmetry, and neglect Lorentz force:

oU, 9P  GMs

" or or 2
Assume isothermal conditions (also works without this assumption):
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Parker’s models for stellar winds and the interplanetary magnetic field

Under the same assumptions, continuity demands:

0
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Parker’s models for stellar winds and the interplanetary magnetic field

87“ 5 8r r2
Under the same assumptions, continuity demands:
0
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Combining both equations leads to:
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Parker’s models for stellar winds and the interplanetary magnetic field

1 8U,,~ . 203 _ GM@
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Both sides of the equation are zero if
G Mg o
T =7 = 5 (critical radius)
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and either or
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(solar breeze) (supersonic solar wind)



Parker’s models for stellar winds and the interplanetary magnetic field
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Parker’s models for stellar winds and the interplanetary magnetic field

What are the consequences for the magnetic field?

Spiral Locus of
Fluid Parcels Emitted #I
from a Fixed Source
on Rotating Sun

#4

Location of Source
when First Parcel
Left Base of Corona

#5

#6

Location of Source
when Last Parcel
Left Base of Corona

Sun Rotating with /
Angular Speed w

(Hundhausen, 1995)

Faraday’s law in ideal MHD:

0B
E—VX(UXB)

The magnetic field is “frozen in” to the
plasma flow.

Steady-state:
Vx(UxB)=0



Parker’s models for stellar winds and the interplanetary magnetic field

Vx(UxB)=0
In spherical coordinates and neglecting polar flows/fields:

U x B = (UyB, — U,By) &



Parker’s models for stellar winds and the interplanetary magnetic field

Vx(UxB)=0
In spherical coordinates and neglecting polar flows/fields:

U x B = (UyB, — U,By) &
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Parker’s models for stellar winds and the interplanetary magnetic field
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So:
r (UsB, — U,By) = a = constant



Parker’s models for stellar winds and the interplanetary magnetic field

10

VXx(UxB)= rc’?fr[(

UyB, — U,Bg) &g =0

So:
r (UsB, — U,By) = a = constant

Assume a distance ry where the field is radial and the plasma is co-rotating:

Ugp(ro) = rofde sin b

This allows us to determine the constant a:

a = riQs B, (rg) sin @




Parker’s models for stellar winds and the interplanetary magnetic field
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Parker’s models for stellar winds and the interplanetary magnetic field

U 2
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Parker’s models for stellar winds and the interplanetary magnetic field

By = %Br TUZ} Qo B, (rg) sin

From V-B =0 we have B, = B,.(r¢) (7;—0)2
so that B, — Us —:2{(25 sin 0 QB (ro)

At large distances, the tangential flow is negligible:
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Parker’s models for stellar winds and the interplanetary magnetic field

(Parker, 1963)

Parker field: Orbit of Earth
To 2
B, = By(ro) ()
r
By =0
()~ sind
By = — = TSB'P(TO)

rU,

Parker angle in the solar wind at 1 au
is about 452,




In-situ measurement of astrophysical plasmas



The measurement of space plasma is as old as the space age

* |In 1958, Parker shows that a hot solar corona
cannot maintain a hydrostatic equilibrium. He
predicts the presence of a supersonic solar wind.

* First in-situ measurement reported by Konstantin
Gringauz in 1960 with data frorrl Soviet Luna 2. J T :
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 Shown to be supersonic by
Marcia Neugebauer in 1962
with data from Mariner 2
(confirmation of Parker’s
prediction).
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We measure the velocity distribution function and electromagnetic fields

054 AU

B18 kmis

Plasma detectors record velocity
distribution functions.

Non-thermal features in particle
distributions form and survive:

e Tails

* Temperature anisotropies
 Multi-temperature
 Beams/drifts



We measure the velocity distribution function and electromagnetic fields
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Measurements of the magnetic field confirm

Parker spiral on average (with added fluctuations). -
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Solar Orbiter — combining remote-sensing and in-situ measurements &

SOLAR ORBITER INSTRUMENTS

Heliospheric Imager (SoloHI) @

Energetic Particle Detector (EPD)

Magnetometer (MAG) | .

RPW o

IN SITU INSTRUMENTS

(O REMOTE SENSING INSTRUMENTS

#SolarOrbiter #WeAreAllSolarOrbiters

Eesa

Spectral Imaging of the Coronal Environment
(SPICE)

Solar Wind Plasma Analyser (SWA)

X-ray Spectrometer/Telescope (STIX)

Extreme Ultraviolet Imager (EUI)
Coronagraph (Metis)

Polarimetric and
Helioseismic Imager (PHI)

Radio and Plasma Waves (RPW)

N

solar.orbiter




SWA - Solar Wind Plasma Analyser (led by UCL/MSSL)
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SWA - Solar Wind Plasma Analyser (led by UCL/MSSL) &

Heavy-lon Sensor
(provided by NASA)

Electron Analyser System
(built at UCL/MSSL)




An example for in-situ space plasma physics
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(Wu,

High-resolution in-situ
measurements of plasma and
electromagnetic fields enables
detailed study of plasma physics.

Magnetic reconnection
transforms magnetic-field
energy into particle energy.

Reconnection exhausts are often
observed in the solar wind and
show interesting kinetic
features.

., DV, et al., 2023)



* Almost all of the visible matter in
the Universe is in the plasma state.

e Electromagnetism, statistical
mechanics, and fluid dynamics are
used to describe plasma physics.

e Stellar winds (including the solar
wind) are examples of astrophysical
plasmas.

 We have direct access to in-situ
measurements of astrophysical
plasmas in the solar system.
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