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Ultra-high-energy cosmic rays
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Neutrinos

: I
103 |

AUGER

TA
Tr*_‘ 10' = pavies
H FERMI
il HESS S
) IceCube “e7%
o KASCADE "55*;
g 1071 |- "
>
& VERITAS Ty
> KMSNET lceCube TI?{.A
@ 10-3 |- H'—i—' -
& N 2 '_l_ !!!b;!
ar T v !!!
— 1230213A !ﬂ

10—5 | Ey — % CR 1T
0—7 |
1le+08 le+10 le+12 le+14 le+16 le+18 le+20

Energy [eV]

6

wn130adg Y 9y I, /[OA0[WLIED /WO0d qnU3 wotj pajdepe ‘Gz NOWOUoIQ)



Ultra-high-energy cosmic rays

<

Hoss(E, = 107 eV) ~ 100 Mpc
Xioss(E, = 10”eV) ~ 1 Gpc

: _— UF23 _ qo
Median Deflection: (0)q i ~ 3° X Z X ( 020 oV

v



Secondary messengers

Q P + YCMB/source — P + €+ +e

P+ YcMmBisource 2> R H AT > n+put+y, >ntet +y,+u,+ 70,

“Greisen, Zatzepin, Kuzmin™ process B neutrinos!

., = : F =

}/S ource U 2 O proton

p+y—op+r o p+y+y

€+ RN
1 ) ) > ~N
Ey = 1_0 proton RN
Averaged branching ratio, Relative gamma-ray/neutrino energy flux: I §




Multimessenger diffuse fluxes
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Generic source properties

e Hillas criterion for acceleration and plausible sources

e UHECR emissivity and number density

* Waxman & Bahcall neutrino bound (possible connection to UHECRS)
* Neutrino source emissivity

* Neutrino source number density and implications

10



Cosmic-ray accelerators that satisfy the confinement requirement (1017 eV)
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Cosmic-ray accelerators that satisfy the confinement requirement (1017 eV)
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Cosmic-ray accelerators that satisfy the confinement requirement (1017 eV)
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Cosmic-ray accelerators that satisfy the confinement requirement (1017 eV)
1 au 1 pc 1kpc 1 Mpc
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Cosmic-ray accelerators that satisfy the confinement requirement (1017 eV)
1 au 1 pc 1kpc 1 Mpc
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Cosmic-ray accelerators that satisfy the confinement re
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Cosmic-ray accelerators that satisfy the confinement re
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Cosmic-ray accelerators that satisfy the confinement re
1 au 1 pc 1kpc 1 Mpc
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Cosmic-ray accelerators that satisfy the confinement re
1 au 1 pc 1kpc 1 Mpc
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Cosmic-ray accelerators that satisfy the confinement re

Magnetic Field Strength [G]
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Cosmic-ray accelerators that satisfy the confinement re
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Hillas criterion for 1020 eV CRs

Magnetic Field Strength [G]

1 au 1 pc 1kpc 1 Mpc
1014 _\:P\ - 5 = 1.0
----- B =0.01
1011 ]
108-
10°- D HL GRB Prompt
LL GRBs/TDEs N
2- | S
10 Wolf-Rayet stars
—1 RN
10 . AGN
>y Hotspots
—4 . AGN
10 < _Lobes
-7 N
10 Galaxy clusters
1010 ' ' ' ' ' - !
10 107 1019 108 10% 10 10%2  10%

Comoving size - I" [cm]

22

Neutron stars

Starbursts

* & " Narrow Line
» / Region

Broad Line
Region

Accretion
Disk

Ol
L
s
oS

Obscuring
Torus

AGN



Generic source properties

e Hillas criterion for acceleration and plausible sources

e UHECR emissivity and number density

* Waxman & Bahcall neutrino bound (possible connection to UHECRS)
* Neutrino source emissivity

* Neutrino source number density and implications

23



Lower limit on the number density of UHECR sources

PIERRE

) RERRE N | & g £ - Te‘escope Arr‘ay:
- ey o N - Amaterasu Particle
Energy: 2.44x 1020 eV

i O e
RN e e = L,
\ WA ) e — — L
\ WL SR A 5 2\ \d = —
PR Ay R e T L
A \ . -
Vo] b"\.‘ | - & % L - -
an N > ndl PIRRY e
4
i 2
o
e N
L
o ~ -~
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- - I

Plerre Auger Observatory:
50,000 UHECRSs above 8x 0!8 eV
40 UHECRs above 1020 eV
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Lower limit on the number density of UHECR sources

SOUrce

The absence of doublets of UHECRS gives a lower limit to the source
number density:

The expected number of events from each source (assuming equal fluxes) is:
nyg = NCR/N

SOUrces
The Poisson probability to see O events from a source is
0

{2

PO)=e a =e ™
The Poisson probability to see 1 event from a source is
—n*ﬁ — Nk
P(l) = e T — I»

The probabillity to see no doublet is
P(no doublet) = (1 — P( > 2))Nsources

= (P(0) + P(1))"wure
= (e7"(1 + n.))Nsources

25



Lower limit on the number density of UHECR sources

pow(exp(-50/x)*(1+50./x),x)

—
<
- —h

The probabillity to see no doublet is
P(no doublet) = (1 — P( > 2))Nsources
p— (e_n*(l -+ n*))Nsources

N NSOUI'CCS
= e N | 14 R
NSOUI'C@S

P(no doublet) ~ 1% if > 200 sources
N, =200

—_
o
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|
w
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BL Lac Objects - 10-¢ Mpc-3

Flat Spectrum Radio Quasars - 10- Mpc-3
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Lower limit on the number density of UHECR sources

Application to Auger data (43 events)

Expected number of pairs in 90% of
realisations (10 degree smearing):

R 0.001

.0001 ¢
100 R
 C (Q.)-
E i
> 1e-05
e- energy scale shift by 22%
data '
10 - i o o e aal . : a2 32 a2aszl L L1 1111 )
1e-06 1e-05 0.0001 0.001 1e-06 : ' '

5 10 15 20 25 30

~ [denl

Conclusion #1: UHECR sources are numerous nore recent resu

FO, Connolly , Thomas, Abdalla, Lahav, Waxman, JCAP05(2013)015

o [Mpc™]



Generic source properties

e Hillas criterion for acceleration and plausible sources

e UHECR emissivity and number density

* Waxman & Bahcall neutrino bound (possible connection to UHECRS)
* Neutrino source emissivity

* Neutrino source number density and implications
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|.UHECR energy loss length

Mean free path = |/ (number density of targets x
cross-section)

Peter Laursen, Phys. Stack Exchange 2015

N
N

10° Radio AR
ﬂ — 1/”0 0 Microwave RS
. 107 Infrared RN -
Energy loss per unit length e ~ optial N
X-rays
dE AFE K'(E)E n 107°- Gamma rays
—_— N — N =
dx A AME) 2 10-° \
Energy loss length, i.e. loss of O(1)fraction of energy: 1o
B E ﬂ(E) 10-15-
Xoss(E) = ~ ] CRB | cMB |ciB coBlcuB cxi CGB
‘ dE/dx ‘ K(E) 10 0.63 411 1.24 0.009 2e-5 9e-9 3e-13
Photo-pair production (Bethe-Heitler process): 108 100 104 107 102 102  10%
v/ Hz
P+rhg—pte +e (k¢ = 2m,/m, ~ 1073,6¢, o~ 1.2 1072 cm?, neyp ~ 411 cm™]
~1
5
2 10V — 1(;_4 ~ Ase ~ 1(neyg - 05) ~ 1 Mpe

29

ABH loss ™ /Iee/K ~ leC



|.UHECR energy loss length

Photo-pion production (GZK process when target is the CMB)

Photo-pion production: 10°
p+Yomp — AT - nlp + a7’ 10°
g}/cmb - O 102
E, 2 1070eV ’ o~ 411cm™ S
6-104eV =
— 10’
()
| :
~ ~ - 1028 2 10°
Ay.cmp = 1/n6 ~ 10Mpc, . = A/k ~ 50 Mpc 0O 10
102
103

30

cosmological max of star formation
ete™|
)(IOSS
" nearest blazar
} py
)(108

galactic center

CMB(>10%eV)
S




UHECR energy density

Auger Coll, ICRC 2017 (see also Auger Coll 2020 PRL)

= E.ie = (5.08 +0.06 & 0.8) EeV
4
@\
=
— 10%}
~ E, — (3942 + 8) EeV
L] ~ ® Auger (ICRC 2017)

17.5 18.0 18.5 19.0 19.5 20.0
Ig(E/eV)
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UHECR energy density

(see Auger Coll 2025 PRL for the most recent update)

J(E) I1s the measured number of particles per unit
energy, per unit area, per unit time, per unit solid
angle

J(E) =

dEdAdrd€2

The number density of particles Is

dN dN dN 4dr
g n(E) = - = = —J(E)
~ Es = (39 +2+8) EeV dEd’>x dE dIdA dE cdr dA C
Ei/ _ Ei/p = (234 1+4) EeV -
. o Auger (ICRC 2017) and the energy density Is
17.5I - I18.OI - I18.5I - I19.OI - I19.5I - IZO.OI | B Y dF — dr EIE) dE
lg(E/eV) Ug = | £ n(E) s J(E)
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UHECR energy density

Auger Coll, ICRC 2017 (see also Auger Coll 2020 PRL) At 5 EeV we measure

Ej-Jy,=10"" eV km = sr™! yr!

which corresponds to (for an E-2 spectrum),

S JRPSIE TSP Ureoens 2 221 In(E. JE.. ) ~ ~ZE2] In(10)
Ei’ | E1/2:(2éi1i4)EeV UHECR ™ B 0“0 max’ ~min B 0v0
CEIJ | ® Auger (ICRC 2017) 53 3
175 180 185 | 190 195 200 ~ 10 eV cm™> =~ 6% 10’ erg Mpc™
Ig(E/eV) |
kg
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UHECR emissivity

Auger Coll, ICRC 2017 (see also Auger Coll 2020 PRL) At 5 EeV we measure

)
is Eg . Jp=10°"2 eV* km™ sr! yr~
“\ i .
E Fankte = (3083006 £0.8) EeV which corresponds to (for an E2 spectrum),
o,
21071 . 47 AT
~ i . 2 ~ 2
E | Eigiiiiie\; UUHECR ~ B —FL, JO ln( max mln) B L JO 111(10)
CEIJ B, Auger (ICRC 2017) 53 3

175 180 185 90 195 200 ~10% eV cm™> =~ 6xX10°° erg Mpc™

Ig(E/eV) | erg ~ | TeV!
- L |
Our estimate of the energy production rate based on the observed spectrum:
| | U
EUHECR ~ UHECR UHECR UHEER ~ 2 x 10% erg Mpc™ year‘1

tloss,U} HCR )(loss,UP *CR/C 1 GPC/C
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UHECR emissivity

Auger Coll, ICRC 2017 (see also Auger Coll 2020 PRL) At 5 EeV we measure

il
s Eg . Jp=10°"2 eV* km™ sr! yr~
I i .
£ Fae = (5054006.:05) BV which corresponds to (for an E-2 spectrum),
('\l> E E
< 1037_ i 4
~ _ (3¢ . 2 2
E Eigiiiiie\; UUHECR ~ - E JO ln( max mln) ~ TE JO 111(10)
CBJ B Auger (ICRC 2017) E 53 3
175 180 185 190 195 200 ~ 10 eV cm™> =~ 6% 10’ erg Mpc™
'BtE/eV) | erg ~ | TeV/
- B .
Our estimate of the energy production rate based on the observed spectrum:
Unr Uynr U
EUHECR N CHECR = CHECR —HER v 2 x 10% erg Mpc™ year™!

tloss,U} HCR )(loss,UP *CR/C 1 GPC/C

Full derivation based on simulated intrinsic source spectra:
: - 44 -3 -1
8Auger combined fit ~ 5% 10 631? MpC year



3.UHECR emissivity: Comparison to source classes

ool | Nk | ey | ousien | Emisi
Milky Way like galaxies |0*2erg s | |0*2 erg s-!gal! Gyr 1047 erg Mpc-3 yr-!
Core collapse supernovae |10~ erg |02 gal-l yr! |04l erg s-lgal-| kyr |04 erg Mpc-3 yr-!
Neutron stars (magnetars) |0 erg s 0-3 gal-! yr| 0% erg s-lgal! kyr 0% erg Mpc-3 yr-!
Gamma-ray burst (on-axis) |10~ erg 0-7 gal-! yr! 038 erg s-'gal! | - 100s 042 erg Mpc3 yr-!
Jetted TDE (on-axis) | 01648 erg 5| |07 gal-l yr! 1037 erg s-lgal-| ~yr |04 erg Mpc-3 yr-!
TDE O*erg sl | 0> gal-l yr! 037 erg s-lgal! ~yr 043 erg Mpc-3 yr-!
Starburst galaxies 0% erg 5! | 0-2 0% erg s-'gal! ~Myr 0% erg Mpc yr!
Non-jetted AGN | 0% erg s | 0-2 |0%2 erg s-lgal-| ~Myr | 0% erg Mpc3 yr-!
Blazars | 047-4% erg 5| |0~ |0*2 erg s-!gal! ~Myr | 0% erg Mpc-3 yr-!

Conclusion #2: Emissivity for most sources OK.




Generic source properties

e Hillas criterion for acceleration and plausible sources

e UHECR emissivity and number density

* Waxman & Bahcall neutrino bound (possible connection to UHECRS)
* Neutrino source emissivity

* Neutrino source number density and implications
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UHECR source diversity?

Auger Coll, PRL, 125, 121106, 2020
Tkachenko for Auger Coll, PoS(ICRC2023)438

Auger Coll, PRL, 134, 021001, 2024

| plot by D Ehlert fractions based on EPOS-LHC
1038 | | | IAugier Cloll, {CA{DOSIQOIQS)OIQZL 103_:
T.:. .000000000,... Le%°%eco.
Tm 102 $g$ $.... ..ooo l+l{ ’¢
7p) + ¢ ¢ ) f
7 b0 "t ik f
1037 - CEJ + 7 . + * + 11 ¢ + *
C\:]> 101_: ¢ ¢ * ? ! O
<) i !
‘ A=) ' - |
| — 2<A<4 ‘ 4 Fe A ?
_ \ ) ¢t  Auger all-part. ¢ |
—— O0<AL22 \ v 10° ¢ Auger p '
g3 | — 23<A<38 \ | Auger N
] — A>39 \ 1 ¢  Auger Fe
' / / \ l 1 | . ?
' I ' ' ' ' I ' ' ' ' | ' ' ' ' ' ' ' ' | ' 10 | | | | | |
18.0 18.5 19.0 19.5 20.0 17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5
logio(E/eV) logo(E/eV)
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J-E’[eVZPkm 2 sr ! yr!]

UHECR source diversity?

D. Ehlert, FO, M. Unger, PRD 10/ (2023) 10

-p -N —-S —-—Fe —=sum Diffuse
1038 : > * spectrum
from:
(« ) o NN
| Standard candles PN _caridentical
N . :
10%7 N In-source cutoff mechanism? sources
5 2
('6 10
~~
1036 é 107
>< 107 P - . o
-~ -4 | -non-identical
& £ | sources

Conclusion: UHECR sources are few or near-identical
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Generic source properties

e Hillas criterion for acceleration and plausible sources

e UHECR emissivity and number density

* Waxman & Bahcall neutrino bound (possible connection to UHECRS)
* Neutrino source emissivity

* Neutrino source number density and implications
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Waxm an- Bah Cal I bO un d E.Waxman, J. Bahcall, PRD 1998
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Waxman-Bahcall bound

e Neutrinos from photo-meson interactions of UHECR protons in sources (AGN/GRBSs)
e Optically-thin sources (protons can escape) - otherwise neutrino only sources not
JHECR sources

® ~ermi-type acceleration

EZodNcr/dEq ~ Eg; (at the source)

: ~ 104 -3 -1
éunecr ~ 1077 erg Mpc™ year

® Proton loses fraction, €, of its energy

C
E1D [single flavour =— ¢ LIy €
g ) ‘Ey=0.05Ecr 4T o) H “UHE
we called it J before... \
=1.5X% 1()_865Z GeV cm™2 \ Hubble time

p+y—p+r°-BR50% | |
2 50 % ¢, ~ 0.6 (no evolution) — 10 (rapid evolution)

p+y—-n+x— B
rt > utty, >et+y, U, v

s Of E .



Waxman-Bahcall bound

107> -

E IceCube HESE, v, 6yr  —+ FermiEGB KASCADE
10—6{ = lceCube EHE 9yr == Auger2016 A Auger

}. — Auger2017 a TA

<=
v
- -~
e

=
-
N

-
3
00

no redshift evolution

E2d[GeVcm2s 1sr 1]
—
<

+y Waxman-Bahcall
H
1.1_ rapid evolution = (——<—"7" ¢

A
A

A
10—10% EI%CDU(single flavour) | E =005, = - ﬁ”
-1 = 1.5 % 10_865Z GeV cm™* s~ ! sr!
10—12 | | | . |
104 103 10° 107 107 101!

E[GeV]




Waxman-Bahcall bound

107> -
§ IceCube HESE, v, 6yr -+ FermiEGB KASCADE
10~6{ — IceCube EHE 9yr == Auger2016 A Auger
— 1. — Auger2017 A TA
IB 1 0_7' *""*.._h* Waxman-Bahcall
i H.I. /% >
7
~ 1078 T ——
A
LE) —9 A
> 10 : A
O ]
2 10-10] E2D (single flavour) | =
o 107773 =y E,=0.05E,, —
W = 1.5x 107%£. GeV ecm™2 s7! sr!
10—11 Z
10712 .

Conclusion #3: IceCube neutrinos consistent with VWB (could be coincidence)



Generic source properties

e Hillas criterion for acceleration and plausible sources

e UHECR emissivity and number density

* Waxman & Bahcall neutrino bound (possible connection to UHECRS)
* Neutrino source emissivity

* Neutrino source number density and implications

45



Neutrino source number density

Number
Source class| density
3
The product of luminosity per source, L, and [Mpc”]
source density, n, corresponds to the total powerful
emission per volume and is constrained by the blazars 10~
observed diffuse flux of neutrinos (FRQ)
weaker
luminosity density ~ (L) - n blazars 10~/
’ y~ (L (BL Lac)
The number density gives the volume within S‘:alrbgrst |0--
which one source must lie is eHaxIes
Galaxy _
|0
\ clusters
V, = My ~ l Jetted AGN | O-4
3 l Normal 02
oalaxies
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Neutrino source humber densit):
=

The nearest neutrino source must therefore be at distance

drn

(ri) ~ 3

—1/3

— (1)

e.g.n=10"*Mpc™

he flux expected from an individual source with neutrino luminosity Lis f ~

107

1079

- ANTARES E—3 Sensit.

ANTARES E~2 Sensit. ===

90% Sensit. E3
50 Disc. Pot. E~3
90% Sensit. E2

50 Disc. Pot. E~2
90% Upper Limits £~
90% Upper Limits £~

-
—

A7rr2

Sources below the IceCube point-source flux sensitivity Fiin must therefore satisfy
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Neutrino source number density

Number
Source class| density
Sources below the IceCube point source sensitivity must therefore satisfy. [Mpc-3]
powerful
1/2 9
7 blazars 10
r> FSR
dnkF;,, (BRY)
weaker
blazars |0/
which translates to a luminosity dependent upper limit on the number density (BL Lac)
Starbgrst 05
-3/2 galaxies
3 L
n<-— Galaxy 08
A \ 4nk;,, clusters
|etted AGN | O-4
Agn\ 3 Normal 02
where we used Eq. (1) r; ~ N galaxies

48



Neutrino source number density

log(Number density [Mpc-3])
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see also Lipari PRD/8(2008)08301 |
Ahlers & Halzen PRD90(2014)043005
Kowalski 2014,

Neronov & Semikoz 2018,

Ackermann, Ahlers et al. 2019,

Yuan et al 2019,

Capel, Mortlock, Finley 2020.
Mearch-Groth, Ahlers 2025

Kuze et al 2026 (Little Red Dots)

High luminosity Blazars

(FSRQs)
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see also Lipari PRD/8(2008)08301 |
Ahlers & Halzen PRD?0(2014)043005

Neutrino source number density

Ackermann, Ahlers et al. 2019,
Yuan et al 2019,

Capel, Mortlock, Finley 2020.
March-Groth, Ahlers 2025

Murase & Waxman 16, PRD 94 (2016) 103006
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log(Neutrino Luminosity[erg/s]) )
Absence of point-source detections implies that the number density is low enough that no source exists at
distance low enough to produce a multiplet 50



see also Lipari PRD/8(2008)08301 |
Ahlers & Halzen PRD?0(2014)043005

Neutrino source number density

Ackermann, Ahlers et al. 2019,
Yuan et al 2019,

Capel, Mortlock, Finley 2020.
March-Groth, Ahlers 2025

Murase & Waxman 16, PRD 94 (2016) 103006
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Conclusion #4: Neutrino sources are not rare and powerful




Recap
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Lecture plan

e (Generic source
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o Active Galactic Nuclel

* Starburst galaxies

e Gamma-ray bursts
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Cosmic-ray accelerators that satisfy the confinement re

Magnetic Field Strength [G]

1 au

1 pc 1kpc 1 Mpc

1014_

Milky Way
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-=- 3=0.01
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Active Galactic Nuclei

Most powerful " steady’ sources in the Universe (L>10%/
erg/s) > 1000 bright Galaxies!

They host a super-massive black hole (SMBH) i e _

( | 06-1010 l\/sun>, CActive’ as emission >> stars in the Artist’s impression of non-jetted AGN shrouded in
- dust [NASA/JPL

galaxy - accretion on to SMBH ust | )L

Visible to large redshifts (z > /.5) - peak z~2 (depends
on type)

| % of galaxies active

NGC 4151/ UGC 7166 / KUG 1208+ 396A
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Active Galactic Nuclei

Most powerful " steady” sources In the Universe (L>10%/
erg/s) > 1000 bright Galaxies!

They host a super-massive black hole (SMBH)
(106-1019 Mgun). "Active” as emission >> stars In the
oalaxy - accretion on to SMBH

Visible to large redshifts (z > /.5) - peak z~2 (depends
on type)

| % of galaxies active

Broad emission lines reveal rapid bulk rotation

[Spectra from: https://www.open.edu/openlearn/science-maths-technology/introduction-active-galaxies/content-section-2.2.2]
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https://www.open.edu/openlearn/science-maths-technology/introduction-active-galaxies/content-section-2.2.2

Th e en gi n e G. Ghisellini, Radiative Processes in HE Astrophysics (201 2)

An efficient way to produce the power
required, Is through accretion onto a
black-hole. As much as 10% of the rest

mass energy in-falling into a black hole Is
converted into radiation

In solar masses per year, the requirement
S

y Ld°Sk Ld'Sk
M=——"=1.75 1 M yr}
0.1¢2 10% erg/s S °

This should be “easy” to supply. A typical

galaxy might have gas mass, Log v [Hz]
M5 ~ 10"°Mg,, *l erg ~ | TeV, Lsun = 3.85 x 1033 erg/s

57



The engine

For an AGN with disk luminosity

and time variability

count rate of X-ray photons/s ™!

At = 10* s, causality dictates R ~ cAt = 0.01 pc =20 AU

We need a supermassive black hole due | |
to the Eddington Iimit! |

47zGMmpc M
Lpgq = = 10°%erg/s v
Sun

%)

l.e. we need,

L.
Q disk
M2 10" Msun ( 1046 erg/s)

S — — [, +Rlc

o3



AGN Unification

The majority of AGN classes can be
explained by three parameters:

Orientation
Presence of jet or not (10% have It)

Radiative efficiency

Face on Side-view
Blazars , |
Jetted (BL Lac/ Radio-Galaxies
(radio-loud) FSRQ) (FRI/I
Non-jetted
(radio-quiet) Seyfert | Seyfert |

o9

" Narrow Line
Region

Broad Line

Accretion
Disk

i

Obscuring
Torus

Radio
galaxy

(observer sees jet from the side)
Blazar

(the observer looks into the jet)




0% of AGN host jets

FRII

Hot Spot  Counter Jet  Core Hot Spot

Radio Galaxy 3C272.1 = M84 Radio galaxy Cygnus A Image credits: NRAO/AUILA. Bridle

VLA 6cm image
Copyright (c) NRAO/AUI 2006

o0



Blazars: Star-like appearance

Radio Optical Y-rays

[Image from SDSS]




Fermi 5-yr blazars

Blazars dominate the extra-Galactic gamma-ray sky

AT
Gk g
° 4C +21.35
Markarian 421
®

o) (©)
2 © - PKS 1502+106
4C +55.17 ©) 4C +01.28

©
©) . ®© O
O PG 1553+113 ® O,
O @ Markarian 501 PKS 1510-08 PKS 1124-186

0 O $50716+71
O

o 0]

O -
0 | . PKS 0805-07

O

PKS 0727-11

O

4C +41.11

PKS 0537-441

, @

PKS 0454-234

O

PKS 2326-502

@)
P

>90% of extragalactic Fermi sources (see also TeVCal)
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S ons of TXS 0506+056 in 2017 and model SED
h| 864 (2018) and MAGIC Coll. Ap) 863 (2018)
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What we can infer from the blazar SED

—xample OJ 287 (see Ghisel. Ch 9):

V' — Jet frame
v — observer frame

v =v'0/(1 + z) — frequency
L = L'6*(1 + z) — luminosity
t=1'/6(1 +z) —time

see Ghisellini T3.1 pg. 45

—MISSIon radius

Rgc@—
|

Measured

| | | | ]
—10 ° _
o) - i
w Ty - —
- |
s _ 0
3 i 45 ¢
_ o
@] )
_12 _ Sy
5 ] 8
D .. __ 44 4;
c3 i A
AN L° i
—-13 o - Q0
Q) . . Q
< v 0851+202 1 43 -
e z=0.306 i
—14 - -
|L..|....|....|.__42
10 15 20 29

Log v [Hz]
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What we can infer from the blazar SED

| | | | | | |

ync . peak luminosity)

K(sy&nc. peak treq) L.
. e

ow peak very likely synchrotron all from same 13 L (s
'egion (correlated variability) S

L U, — (1
socBg () _14 l
Up = (2)

ST

Often correlated variability in high peak,
-> [nverse Compton with synchrotron photons

LC X Urad o (3)

L
4 4R254¢ &)

Log vF |erg cm™ s7!]
|
O

| | | | | | | | | | | | | I | | | | |

10 15 20
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What we can infer from the blazar SED

| | | | | | |

—13 =L (sync.peak luminosity)

K(sy&nc. peak treq) L.
. e

A

Combining (1), (2) & (3)

I
—
AN

rad S

LS UB B R254CB2

Lo U 2L

Rearranging, we get,

7 2 1/2
B?6° = (1 + 72— (—)
Ctvar CLC

|
~
)
"~

Log vF |erg cm™ s7!]
|
O
| | | | | | | | I | | | | I | | | |

| | | | | | | | | | | | | I | | | | |

10 15 20
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What we can infer from the blazar SED

| | | I | | |

From the peak frequencies we have, —13 —L]S(sync .peak lumiHOSityl)

Yoreak — LoOrENtZ factor of emitting elec. yS(SynC . peak freq) LC
' e

A

|
—
AN

4 eB 0
ybreakl

I/S —
3 2nm,c

Log vF |erg cm™ s7!]
|
o

Using (6) we get

2
3rm,c vg

B-0=(1+2 (7)

| | | | | | | | | | | | | | | | | | |

26 Ve
10 15 20

We now have 2 equations (5,7) and 2 unknowns Log v [Hz]



What we can infer from the blazar SED

For Od 287

t..~ 10* s, v ~ 5% 10" Hz,1, ~ 10*! Hz

va
.B~04 G,6 ~ 20

E_ ..~ ZeBI'R ~Z-4x10% eV (Hillas criterion)

Log vF, [erg cm™2 s7!]

For typically inferred parameters

B’ ~ 0.1 — 1 Gauss —14
—* 1 L N R

['~6~10-350
R’ S OtyyC, tyy ~ day

E .~ ZeBTR > Z-fewx 10" eV
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TXS 0506+056 observations:
lceCube, Fermi-LAT MAGIC, AGILE, ASAS-
SN, HAWC, H.E.S.S, INTEGRAL, Kanata,

N o d o o bl Kiso, Kapteyn, Liverpool telescope, Subary,
t t SwiftNUSTAR, VERITAS, and VLA/| 78-403
eutrino production in blazars WUNSTAR VERTASard AT 7240
MAGIC Co//.Astrophysj. 863 (201 8) L/O
lceCube Collaboration: M.G. Aartsen et al.
Science 361, 14/-151 (2018)

TXS 0506+056 modelling:
MAGIC Coll 2018,ApJ, 863, L10
Gao et al, 2019, Nat. Astron., 3, 88
Keivani et al. 2018,Ap/, 864, 54
Cerruti et al 2018 MNRAS, 483, |
FO et al 2019, MNRAS, 489, 3

Dust hadro-nuclear interactions: Liut+ /9

Torus stellar disruption: Wang+ 19

(IR photons) multiple zones: Xue+(inc FO) |9

neutron beam: Zhang+(inc FO) |9

BI:oad curved/double jet: Britzen+ 19, Ros+ 19
Iln.e ', inefficient accretion flow: Righi+/9
region . gamma-suppressed states: Kun+2
V photons) o 2014 flare: Reimer+19, Rodrigues+ 19,
. - > Halzen+ 19, Petropoulou+20,

and more...!

Sl Neutrino production in blazars :
e.g. Mannheim 1991, 1993,
V/X-ray Halzen & Zas 1997, Miicke 2001, 2003, Atoyan & Dermer 2001, 2004,
hotons) Neronov, Semikoz 2002, Dermer et al 2006, Kachelriess et al 2009,

Neronov et al 2009, Bottcher 201 3, Dermer, Cerruti 201 3,

Cerruti et al 2013, Tcherin et al 201 3, Murase et al. 2012, 2014,

‘ Dermer et al 2014, Tavecchio et al 2014, 2015, Petropoulou et al 2014, 2015,2016,
Jacobsen 2015, Padovani 2015, Gao et al 2017, Rodrigues et al 201/, 2020,

‘ 24 Palladino et al. 2019, FO et al 2019, 2021, Righi et al 2020, Rodrigues et al 202 |




Neutrino production in blazars (py)
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Possible contribution of blazars to the diffuse neutrino flux

. :
75 : Auger 2019
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Possible contribution of blazars to the diffuse neutrino flux
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Neutrinos: Likelihood sta%dng approach
60 —

10 year map lceCube Coll, PRL 2020

15
0
15\
-30
-60 75 — - | ~100000 neutrinos / year
~200 astrophysical

~30 high energy (E> 60 TeV)/year

/3



Neutrinos: Likelihood stacking approach
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Population limits from lceCube (and Auger)
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Stacking limits from lceCube
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Blazar/radio galaxy contribution to UHECR/neutrino flux!

UHECR Emissivity UHECR number density
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Scorecard

Eax ""UHECR €UHECR & Stacking UL
BL Lacs & > = ) ~20%
FSRQs & = = = ~20%
FR | & & & & ~20%
FR I © = < © ~20%

Non-jetted AGN
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HL GRBs
LL GRBs
TDEs
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Cosmic-ray accelerators that satisfy the confinement
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Non-jetted AGN
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Non-jetted AGN

Swift-BAT | 05-month hard-X-ray catalogue 2018
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radio-loud (RL) AGN

radio-quiet (RQ) AGN

X-ray absorbers in AGN

Ghisellini 2012
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radio-loud (RL) AGN

radio-quiet (RQ) AGN

X-ray absorbers in AGN

Blazar

low power high power

BL Lac FSRQ

Risaliti & Elvis 2004
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NALs

log[¢ (erg cm s )] =0-1.5
log[N, (cm™ )] = 18-20
VeI00|ty = 100-1,000 km s™
Distance scale = ~1 pc—1 kpc

BALs

log[& (erg cm s )] =0.5-2.5
log[N, (cm™ )] = 20-23

Velocnty = 10,000-60,000 km s~
Distance scale = 0.001 pc-500 pc

Laha et al 2020

WAs

log[¢ (erg cm s )] =-1-3
log[N,, (cm 2] =21-22.5
VeIOC|ty = 100-2,000 km s™"
Distance scale = 0.1 pc—1 kpc

Observed in ~50% of
Seyfert |

log[¢ (erg cm s )] =3-5

log[N,,

Velocny = 10,000-70,000 km s™"
Distance scale = 0.001 pc—-10 pc

UFOs

(cm™?)] = 22-23.5

I Illlll]
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Observed in ~40% of
radio loud and radio
quiet AGN

v~003-03c

(Tombesi et al
2010,2011, 2012, 2014)

Hillas criterion OKI
(but interactions with
IR photons limit max energy)



Co'ns'iste'ntwf
27% = 100%

Non-jetted AGN contribution to the cosmic-neutrino flux [ SEEE.

Non-jetted AGN

Infrared selected (ALLWISE) AGN with
soft-X-ray weights ~ 32,249 AGN

2.60 excess w.rt. background AGN Catalog lceCube Point-Source Events
expectations DR
~ .;f-_.:'.' ° . ‘0 ‘:"':': ~ 60 75 _
_E?_E. !_ _.; e " . : -
- dN ) AN M
Best-fit spectral iIndex — ~ E N R s At
dE ° :.0;0. _'.'.‘.. % ...“' % :.‘:o«'.' .::
°. .o_“’_O'_';:g:;o: 0+-0 00%'8.‘0,: !:0 o

could account for 27-100% of diffuse lceCube Coll 2022 PRD
neutrino flux at 100 TeV
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Co'ns'iste‘ntw.
27% = 100%

Non-jetted AGN contribution to the cosmic-neutrino flux [ St

Non-jetted AGN

Astrophysical Diffuse Flux (95% C.L.)
1 Ap] 809, 2015 1 PoS(ICRC2019)1017

10™
AGN corona v
Kalashev et al. 2014 — |R-selected AGN & Moy AGN corona y (cascade) )
_ Stecker et al. 2013 — 10° L& AGN corona X (thermale) ———
- -7 L = \li:_lh,
% 10 ~.—w Ay IIII NGC 1068 ]
— this @ -6 feacce’ffaio:[ LT (medium _
| AN 10 -!'!TIH!'I'-_ : =
% work £ \ """q...w energy V) !th|s ;
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- ] LA
1077 ¢ 10” g e e 7
: 10 "10°10°10 " 10" 10" 10° 10° 10" 10° 10~ 10
103 10° 10° 106 107 108 E [GeV]
E, [GeV]

several mechanisms proposed and consistent with this signal could account for 27-100% of diffuse IceCube Coll 2022, PRD
neutrino flux at 100 TeV

E.g. UFOs (Ehlert, FO, Peretti 2025)
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N G C I 068 lcecube Coll 2023 - Science
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NGC 1068

Seyfert 2 galaxy with heavily obscured nucleus

Prototypical nearby Seyfert 2 (14.4 Mpc)

igh infrared luminosity: high-level of star formation
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Declination

lcecube Coll 2023 - Science
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Neutrino production in NGC |068

1078
10—9 _ GRAMS
(35 days)
10713
0 .
C\l\ i
il /
% -/ - :
—11 _| 7
L, 'AMEGO
% (5 yrs
= 1075
= GRAMS
S (3
[S
10—13_
10714
10710 I |
100 107 108 10?

Y. Inoue et al 2019

v . Corona

~v: Corona (Screen)

7v: Corona (Uniform)

. N [ceCube
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Energy [eV]
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Rneutrinos < S RSW

Murase 2022, Halzen 2023,
newer Fermi-LAT analysis:
Murase 2024, Das et al 2024,
Saurenhaus et al 2025

~the size of the AGN corona
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Neutrino production in AGN Coronae

Murase et al 2020
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Scorecard

Enax % NUHECR €UHECR 1, Stacking UL
BL Lacs D - y ) <20%
FSRQs ay = = ) <20%
FR | & & = & <20%
FR I © © < © <20%
Non-jetted AGN UFOs ay ay y <) < 00%
Non-jetted AGN Corona & ¥ < & < | 00%

Starburst galaxies
HL GRBs

LL GRBs

Pulsars

TDEs
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Cosmic-ray accelerators that satisfy the confinement re

1 au 1 pc 1kpc 1 Mpc
[t — 5=10
. —-== 5=0.01
1011_

Magnetic Field Strength [G]
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Neutron stars

Starbursts
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1.8 - Ha
O = S
g, 1.4 -
Starburst galaxies |
s 1.2
E
)
g
g 0.8
Z 0.6 ) I Ho ]
: : : = ‘2
High star-formation rate (> 100 x Milky Way) | § o4f | J
5 E
0.2 -g
Starburst episodes are short-lived (<108 yrs) R TR R T & !
wavelength A/nm 3 [o1I] [NII]
5
Centrally driven strong outflows (" superwinds”) : 1-)(\,Q/\U y ELM\—
=% !

Column densities 2g > 0.1g/cm? and magnetic fields YT w0 a0 sw s G0 e 70

wavelength A/nm

B ~ | mG (cf 25 = 0.003g/cm?, B ~ 5uG in the Milky way)

TeV gamma-ray detections from NGC 253 (~3 Mpc) &
M82 (~4 Mpc) - consistent with point like at VHE

And a handful more in GeV gamma-rays (NGC494)5, e
NGC 1068, Circinus, Arp 220)

M82 | NGC 253



UHECRSs from starburst galaxies?

Auger Coll, ApJL, 853, L29, 2018, Auger Coll 2022, Ap| 935 (2022) 2, | /0

Starburst galaxies (radio) - W =25°
75> Galactic

latitude
o

-75° Ionékude

0.0 0.2 0.4 0.6 0.8 1.0
Model flux, ®(Eauger = 40 EeV) [arb. unit]

Cirreltsdigaiadies fearsfattety eignisnts
E Sn8dehElgrataatsoiGRRBYetc)
post-trial significance: 4.20
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Lovelace |9/76, Waxman 1995, 2001, Blandford 2000,
Lemoine & Waxman 2009, Farrar & Gruzinov 2009
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Ur - Volume
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0e (green), oinel (blue) and oot (red) (mb)

Neutrino production in proton-proton interactions

Gas reservoirs (Starburst galaxies, Galaxy Clusters...)

Since interaction length A(E) « 1/6(E) ~ const.
p+p—>p+p+Nrt+Nn + Nz’ and meson production spectra

A A A o 7k 7 S ey Bp) = AETE,)
For AN/AE ~ E7
AN/dE, ~ dNIAE, ~ E;"

TOTEM Coll. EurPhys,.C 79 (2019) 103

140 r

A pp (PDG 2010) % STAR (prelim.) @ TOTEM |
1301 v pp (PDG 2010) &3 ALICE o LHCb
120 | o Auger (+ Glauber) « ATLAS/ALFA > CMS
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— — — 0g fit by TOTEM
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Neutrinos from starburst galaxies: Reservoir model

sketch by K Murase

CR confinement

W region w. CR sources

High gas density, high B environment

UHECRSs

from GRBs
—

The highest energy cosmic rays escape (observed)

Lower energy CRs lose all their energy In pp interactions
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Neutrinos from starburst galaxies

Palladino et al 2019
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see also Bechtol Ahlers et al 2015



Scorecard

Epax % MUHECR €UHECR 1, Stacking UL
BL Lacs & > & * <20%
FSRQs & = < = <20%
FR | & & & < <20%
FR I © & < > <20%
Non-jetted AGN & & < < <|00%
Starburst galaxies > ) D ) <100% e
HL GRBs
LL GRBs
Pulsars

TDEs
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Cosmic-ray accelerators that satisfy the confinement re

1 au 1 pc 1kpc 1 Mpc
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Gamma-ray bursts

Discovered serendiprtously in 1967

Intense short flashes of light peaking in the 10 keV
-1 MeV range

Isotropic equivalent energy release ~10°410°° erg
(ct <I10% erg/s iIn AGN)

Rate ~ 1000 year occur in the Universe

Short (0.3 second) and long (50 second) bursts -
Iwo distinct populations

"~ Afterglow’ fading emission for hours to months

Before and after Fermi LAT views of GRB 130427A, centered on the north galactic pole
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Gam ma- ray bu rStS Fermi-LAT 2nd GRB Catalogue, 2019
Fermi-LAT 10 year GRB mag DU
> | 08”#028 < 130427A°

160623A

080916C

"

IPN Fermi
INTEGRAL /

#" The most powerful < L - . | . | - >2000 GRBs with Fermi-GBM
' transients in the NG -/ . ~200 with Fermi-LAT

-30°

Universe N » | : : 5 with H.ES.S.

”
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UHECR maximum energy

Very high Lorentz factors T External Shock
possible cross-shock IC
Highly magnetised expanding jet Internal Shock Tl
=
. . parts of the flow shockew
& .
< 1020 GRB Photospheric 7
Emax ~ 1() GV . Z . ( 1051 or ) B ) R e %'radiatin
g AN~
~Jdet ~— ancY X
Waxman 1995, Vietri 995 AANAD O
R

Maximum energy OK for protons

| 3 16
=10" ¢m =~ 10" cm > 10""cm

Nucler survival in GRB photon fields?
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Neutrino production in GRBs

Ample photon fields

Meszaros & Rees, 2014 Several shocks - - also External Shock
possible cross-shock IC
+/.0 Flow decelerating into
= lp+ 7l
p }/Jet p Internal ShO Ck the surrounding medium
z z e |
parts of the flow shock<= => shock
mx I I ,
EE, 2 —= =0.16 GeV ‘ prooprerc il 1
4 1 + Z 1 + Z -‘ <&y ) ) i 'ra jaton -
-1 - — —~ Jof — — | oA
2
E > 38 GeV ( L ) £y | . AN }
C : —
v — :
1 + vé MGV ‘ eV- PeV neutrinos

e.g. prompt emission,

:1011 cm = ]OHCIT] >10""cm

z=11T2=10° E ,~ 250 keV — E, ~ PeV

> [ 00 publications on theoretical expectations:
see e.g. review "Neutrinos from GRBs” (Kimura 2022)
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GRB contribution to the cosmic-neutrino flux

Stacked search for 2000 Fermi GBM GRBS /cigube Point-Source Events
neutrinos coincident with ' 3’* i R T W 60—
prompt GRB emission. ’ '

209| GRBs R

2000 GBM GRBs
266 Swift GRBs
121 LAT GRBs

lceCube Coll, ApJ 843 (2017) 112
lceCube Coll, Fermi GBM Coll, Abj 939 (2022) 2

+strong limits from GRBZ22 1 009A (the ~"BOAT’) Prompt (ATprome ~1-100s): < 1% diffuse neutrino flux
lceCube Coll ApJL 946 L26 (2023)

ANTARES Coll MNRAS 469 906 (2017) Precursoré,gxfterglow (ATaftersow T 14d): < 24% diffuse neutrino flux




Scorecard

Enax % NUHECR €UHECR n, Stacking UL

BL Lacs &< * < = <20%
FSRQs & > & = <20%

FR | & & & & <20%

FRII & & & & <20%

Non-jetted AGN & & & = <|00%

Starburst galaxies @ < = = <100%
GRBs © & & & 1%

TDEs
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Cosmic-ray accelerators that satisfy the confinement re

1 au 1 pc 1kpc 1 Mpc
1014 —_— 5 =1.0
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Tidal disruption events

SMBHs are orbrted by star clusters

Millions of stars in random orbits
Tidal forces may deform, or tear Into pieces a star

One TDE in 10%107 years per SMBH

-or tidal forces to be relevant they must be stronger than
the star's self gravity

GM SMBHR* GM *

R? R3
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Tidal disruption events

GMSMBHR* _ GM*
R? R

For tidal disruption to occur R, < R;

R: must be outside the event horizon for visible TD

The Schwarzschild radius is

2R 3/2 R 3/2 v

_ C I * *

Mgypy < M2 ( e ) ~ 10°M, (R—) (M_
O] O]

FOr Rt >rs

108
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Tidal disruption events

-lare of electromagnetic radiation at high
beak luminosity (X-rays)

| ocated In the core of an otherwise
quiescent, Inactive galaxy

-xtreme flares can host a relativistic
nadronic jet

Typically 50% of the star's mass expected
to stay bound to the SMBH and be

ultimately accreted

~ |00 candidate TDEs observed so far; 3
with jets (hard X-ray spectrum)

Timescale of months to years
109



Swift |1644+57

Test case, Swift | 164445/, jetted TDE observed In
“blazar’” mode

O
oa

served for ~600 days, In a smal

quiescent

axy In the Draco constellation a

BR
E ~10YeVZ

7z = 0.35

I’

3x 107 Gcm 10
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Swift |1644+57

1 O 18 Farrar & Piran 2014

Test case, Swift || 644+57/, jetted TDE observed in = | | -

“blazar’” mode - -
Observed for ~600 days, in a small quiescent c
oalaxy In the Draco constellation at z = 0.35 3
)

BR I

E . ~100evVZ r

3x 1017 G cm 10 m - _

® 6 ~1/T

| , e 1016 |— _

For Swift |1644+5/ from radio observations in the outer - ® 9. = 0.1 =

jet (but dependent on assumed opening angle of |et) _ J _

|_I| | | 1 1 111 I| | L 1 11

BR>1-3x%x10" G cm 10 102

t [d]
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Can TDEs be the main sources of UHECRSs?

The "apparent” source number density must satisfy the
observational bound, with o¢ the spread in arrival times

neﬁ«N&‘-p

From Auger

nygEcr 2 2 X 107 Mpc™

The observed rate of jetted TDEs
p~ 1071 = 1071 Mpc™ year™!

TDEs can satisfy the number density requirement if

. D \°f E \°[ Ay B \°
Olgeray = 107 yr - 5
100 Mpc 10%eV 1 Mpc I nG
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Neutrinos from TDEs!?

107}

Photopion interactions in the jet (condrtions similar to 1061
AGN/GRB) Ly

L 10°F

m>~
One problem is that jetted TDEs are very rare Q104

QO
n = 101" Mpc3 ct GRBs,n = 107 Mpc? ; 10°

@ 107}
Non-jetted TDEs 10 -100 times more numerous, but S 10l
not clear If (where!) they accelerate 107 eV protons %

g !
Stacking limits from lceCube (jetted TDEs < 1%, non- 2 01l W 1cecube
jetted < 26%) .| IceCube-Gen2

10% 104 10% 10 10°° 10°! 10~% 10°3 10> 10~
effective bolometric neutrino energy E,[erg]
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TDE contribution to the cosmic—neutrino flux

3 jetted TDEs
40 non-jetted TDEs (mixture
of X-ray / UV / optical TDEs)

Updated search in 2022 ZTF
TDEs with neoWISE flare
(" "dust echo™) Y. Necker TeVPA

2022 - No excess

lceCube Coll PoS ICRC 2019
Necker et al 2022 (ASAS-SN Coll)
Stein et al 2022 (ZTF Coll)

TDE sky-map
79°

-*150° —120° —-90° —60° —30° 0° 30 H0°

—75° gal longitude 1

90° 120 150°

Tidal disruption events

lceCube Point-Source Events
75
60 -

Jetted TDEs: < 3% diffuse neutrino flux

Non-jetted < 26%
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https://indico.cern.ch/event/1082486/contributions/4878587/attachments/2490304/4276548/accretion_flare_stacking_tevpa2022.pdf
https://indico.cern.ch/event/1082486/contributions/4878587/attachments/2490304/4276548/accretion_flare_stacking_tevpa2022.pdf

Scorecard

Enax % NUHECR €UHECR n, Stacking UL

BL Lacs = * < = <20%
FSRQs & < & = <20%

FR | & & © & <20%

FR I & = & = <20%

Non-jetted AGN & = = < <100%

Starburst galaxies @ < = = <100%
GRBs © & & < 1%
Jetted TDEs &< S l > <3%
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The current neutrino source landscape: Stacking upper limits

plot from FO PoS ICRC2021 (2022) 030, based on numerous lceCube analyses, see arXiv:2201.05623 for references
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https://arxiv.org/abs/2201.05623

Scorecard

Enax % NUHECR €UHECR 1, Stacking UL

BL Lacs & ) & - <20%
FSRQs & & & ) <20%

FR | & & & < <20%

FR I & & & & <20%

AGN Winds & & & < <100%

AGN Coronae ¥ & = = < 00%

Starburst galaxies ) =y & & <|00%
GRBs & = &) > < | %
Jetted TDEs < = = x <3%
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*(but problems at
medium E)
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