

# K. Schoeffler<sup>1</sup> F. Bacchini<sup>2</sup> M. E. Innocenti<sup>1</sup>

1 Institut für Theoretische Physik, Ruhr-Universität Bochum, Germany

2 Centre for mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B, B-3001 Leuven, Belgium

RUHR UNIVERSITÄT BOCHUM



# Relativistic reconnection, explicit or semi-implicit methods?





# What is an explicit Particle-in-cell (PIC) code?





 $u_{i,n+1}$  and  $E_{n+1}$  are calculated based on only the fields  $E_n$  and momenta  $u_{i,n}$  from the previous time step

Leads to instabilities if time steps and spaces are not fully resolved









# What is an implicit Particle-in-cell (PIC) code?



 $\frac{\partial u_i}{\partial t} = \frac{q}{mc} \left( E + \frac{v_i \times B}{c} \right)$  $j = \sum_{i} q_{i} n_{i} v_{i} \qquad v_{i} = \frac{u_{i}}{\gamma_{i}}$  $\frac{\partial B}{\partial t} = -c\nabla \times E$  $\frac{\partial E}{\partial t} = c\nabla \times B - 4\pi j$  $\partial t$ 





All equations are solved self-consistently in terms of both  $u_{i,n}$ / $E_n$  and  $u_{i,n+1}$ / $E_{n+1}$ usually by iteration

RUHR

BOCHUM

Avoids instabilities, allowing for underresolution of time and space









#### What can we under-resolve



If we are mainly interested in ion scales, we can under-resolve the electron scales

#### **Spatial resolution**

 $\lambda_D/dx > 1$ 

 $d_e/dx > 1$ 

 $d_i/dx > 1$ 

$$\lambda_D^2 = \frac{T}{4\pi m n e^2} \qquad d_e^2 = \frac{m_e c^2}{4\pi m n e^2}$$

$$d_i^2 = \frac{m_i c^2}{4\pi m n e^2}$$

$$\lambda_D = \frac{v_T}{c} d_e = \frac{v_T}{c} \sqrt{\frac{m_e}{m_i}} d_i$$











#### What can we under-resolve



If we are mainly interested in ion scales, we can under-resolve the electron scales

#### **Spatial resolution**

 $\lambda_D/dx > 1$ 

 $d_e/dx > 1$ 

 $d_i/dx > 1$ 

$$\lambda_D^2 = \frac{T}{4\pi m n e^2} \qquad d_e^2 = \frac{m_e c^2}{4\pi m n e^2}$$

$$d_i^2 = \frac{m_i c^2}{4\pi m n e^2}$$

$$\lambda_D = \frac{v_T}{c} d_e = \frac{v_T}{c} \sqrt{\frac{m_e}{m_i}} d_i$$









#### What can we under-resolve

We only need to resolve regions where kinetic effects are important: Particularly useful with nonstandard grids (eg. log scale grids)

> **Kinetic effects** important

> > **Under-resolved** fluid model suffices















#### Relativistic implicit schemes

Factor  $\gamma_{i,n}$  makes system of equations nonlinear, and more difficult to solve

> Factor  $\gamma_{i,n}$  also reduces scale separation, for relativistic temperatures and velocities

#### No benefit in pair plasma





 $\frac{\partial B}{\partial t} = -c\nabla \times E$ 

 $\frac{\partial E}{\partial t} = c\nabla \times B - 4\pi j$  $\partial t$ 



#### Relativistic implicit schemes

Factor  $\gamma_{i,n}$  makes system of equations nonlinear, and more difficult to solve

> Factor  $\gamma_{i,n}$  also reduces scale separation, for relativistic temperatures and velocities

#### No benefit in pair plasma



**Useful in moderately** relativistic cases: where electrons are relativistic but ions are not



#### Relativistic implicit schemes

Factor  $\gamma_{i,n}$  makes system of equations nonlinear, and more difficult to solve

> Factor  $\gamma_{i,n}$  also reduces scale separation, for relativistic temperatures and velocities

#### No benefit in pair plasma



**Useful in moderately** relativistic cases: where electrons are relativistic but ions are not

More radiative cooling for electrons may help retain a scale separation





#### Relativistic Semi-Implicit code RelSIM

Bacchini 2023 [ https://doi.org/10.48550/arXiv.2306.04685]

**ReISIM** is **EcSIM** (Lapenta 2017): modified such that it can do simulations of relativistic plasmas.





#### **Tested two-stream**







#### **OSIRIS** framework

Massively Parallel, Fully Relativistic • Particle-in-Cell Code

- Support for advanced CPU / GPU architectures ٠
- Extended physics/simulation models ٠
- AI/ML surrogate models and data-driven discovery •

# Open-source version available

#### **Open-access model**

- 40+ research groups worldwide are using OSIRIS
- 400+ publications in leading scientific journals
- Large developer and user community
- Detailed documentation and sample inputs files available
- Support for education and training

#### Using OSIRIS 4.0

- The code can be used freely by research institutions after signing an MoU Open-source version at:
  - https://osiris-code.github.io/



**Ricardo Fonseca:** ricardo.fonseca@tecnico.ulisboa.pt



# Explicit method recovers Relativistic two-stream growth rate UNIVERSITÄT BOCHUM



#### with **OSIRIS**





### Both Explicit and implicit methods recover theoretical rate



**RUHR UNIVERSITÄT** BOCHUM









### Tearing mode







### Tearing mode







# Relativistic tearing electron-positron (explicit simulation)



**Theory From Zelenyi 1979** 

**RUHR UNIVERSITÄT** BOCHUM









### Relativistic tearing electron-positron (explicit simulation)





**RUHR UNIVERSITÄT** BOCHUM







### Relativistic tearing electron-positron (explicit simulation)



**RUHR UNIVERSITÄT** BOCHUM





n







#### Implicit method recovers explicit result

#### **OSIRIS**











### Implicit method recovers explicit result













### Implicit method recovers explicit result









n



 $x/\lambda$ 



### Relativistic tearing electron-ion (explicit simulation)



**Theory From Zelenyi 1979** 

**RUHR UNIVERSITÄT** BOCHUM



m<sub>i</sub>  $T_{e,H}$ = 0.1 $m_e$  $m_e c^2$ С

$$\frac{\lambda}{d_e} = 10 \qquad \qquad \frac{\lambda}{d_i} = 1 \qquad \qquad \frac{T_i}{T_e} = \frac{T_i}{T_e}$$

No background
$$ppg = 4096$$
 $\lambda/dx = 16$  $\lambda_D/dx = 1.6$ 











# Relativistic tearing electron-ion (ppg dependence)



#### **Because of numerical** heating?

RUHR UNIVERSITÄT BOCHUM







### Implicit method recovers explicit result (for cheaper)



#### **Good agreement with** low resolution

**RUHR UNIVERSITÄT** BOCHUM





### Implicit method recovers explicit result (for cheaper)



**RUHR UNIVERSITÄT** BOCHUM





$$\lambda/dx = 16 \qquad ppg = 4096$$



#### **Good** agreement with low resolution









### Early tearing (explicit high resolution)









### Early tearing (explicit high resolution)













### Early tearing (semi-implicit low resolution)



**RUHR UNIVERSITÄT** BOCHUM







### Early tearing (semi-implicit low resolution)



**RUHR UNIVERSITÄT** BOCHUM











# Nonlinear stage (explicit high resolution)









# Nonlinear stage (semi-implicit low resolution)



**RUHR UNIVERSITÄT** BOCHUM





### Saturation stage (explicit high resolution)









### Saturation stage (semi-implicit low resolution)









### Large scale tearing/reconnection (explicit simulations)



**RUHR UNIVERSITÄT** BOCHUM



Kevin Schoeffler | CIM (SFB1491) General Assembly 2023 | November 6, 2023



#### 100



### Tearing and merging



 $B_{y}$ 







### Late stage merging/ secondary islands









# Late stage merging/ secondary islands (density)

N











### Particle spectra















# Conclusions

#### **Semi-Implicit methods**

- Allow for underresolution
- Free from numerical instabilities present in explicit codes

#### **Relativistic EcSIM (RelSIM)**

- Seems to do a good job on tearing for low resolution
- Could help find particles spectra in relativistic reconnection





