

The surprising effectiveness of cosmic ray acceleration

Tony Bell

STFC Rutherford Appleton Laboratory and University of Oxford

Cassiopeia A, the brightest (extra-solar) radio source in the sky

http://hubblesite.org/newscenter/archive/releases/2006/30/image/a/format/xlarge_web/

Cosmic rays: high energy charged particles arriving at Earth

One per square kilometre per century

High energy charged particles in supernova remnants

Radio: GeV electrons

X-ray: TeV electrons

Gamma-ray: Up to 100 TeV

Observations place stringent requirements on CR acceleration

Requires 10-30% of energy output from Galactic supernovae

Efficient acceleration to 3PeV (the 'knee')

Continuity implies Galactic acceleration to 1000 PeV (the 'ankle')

Extragalactic beyond the ankle

from Blumer et al 2009

The standard model: Diffusive shock acceleration (DSA)

Shock velocity: u_s

CR density at shock: *n*

At each shock crossing

Fractional energy gain
$$\frac{\Delta \mathcal{E}}{\mathcal{E}} = \frac{u_s}{c}$$

Fraction of CR lost
$$\frac{\Delta n}{n} = -\frac{u_s}{c}$$

Differential energy spectrum $N(\varepsilon) \propto \varepsilon^{-2}$

Acceleration needs magnetic field which needs energy

Shock velocity: u_{shock}

Cosmic ray density at shock: N

Now add in energy loss to Magnetic field amplification

At each shock crossing

Fractional energy gain
$$\frac{\Delta \varepsilon}{\varepsilon} = \frac{u_{shock}}{c} \left(1 - \frac{U_{turbulence}}{U_{CR}} \right)$$

Fraction of cosmic rays lost
$$\frac{\Delta N}{N} = -\frac{u_{shock}}{c}$$

$$n \propto \varepsilon^{-2-(U_{turbulence}/U_{CR})/(1-U_{turbulence}/U_{CR})}$$

Bell et al 2019

Diffusive shock acceleration: turbulence steepens the CR spectrum

$$n \propto \varepsilon^{-s}$$
 where $s = 2 + \frac{U_{turbulence}}{U_{CR} - U_{turbulence}}$

Non-resonant instability (consistent with observation): $U_{turbulence} \propto \frac{u_{shock}}{c} U_{CR}$

SNR radio spectral index α against expansion velocity

Maximum (Hillas) energy

Maximum energy (eV) =
$$\frac{1}{4} \left(\frac{\lambda}{r_g} \right)^{-1} u_{shock} BL$$

Requires
$$\lambda \sim r_g$$

'Bohm' diffusion (so-called by astrophysicists)

Needs magnetic field to be turbulent on scale of gyroradius

Consequences of the 'Hillas' energy

Maximum energy (eV) =
$$\frac{1}{4} \left(\frac{\lambda}{r_g}\right)^{-1} u_{shock} BL$$
 =1 for maximum energy

For young energetic supernova remnants

$$u_{shock}$$
~5,000 km s⁻¹

$$L \sim 3 \times 10^{17} \text{m}$$

Interstellar magnetic field $B \sim 5 \times 10^{-10}$ Tesla (5µG)

Maximum energy $\sim 0.2 \text{ PeV}$

Too small by factor of 10 even to get to the 'knee'

Generality of Hillas energy

1) Spatial confinement Larmor radius less than size of accelerating plasma

$$r_g = \frac{\epsilon_m \alpha x}{\epsilon_B}$$
 CR energy in eV

$$\epsilon_{max} < cBL$$

2) All acceleration comes from electric field $\mathbf{E} = -\mathbf{u} \times \mathbf{B}$ velocity of thermal (MHD) plasma

Maximum energy gain: $L \times \text{maximum electric field}$ $\epsilon_{max} < uBL$

In turbulent magnetic field
$$\epsilon = \int v \cdot E \, d\ell = \int u \cdot (v \times B) \, d\ell$$

Depends on correlation between $\, {m v} \,$ and ${m B} \,$ Bohm diffusion is as good as it gets

Applies not just to shock acceleration

Historical shell supernova remnants: CR generate their own magnetic field (Vink & Laming, 2003; Völk, Berezhko, Ksenofontov, 2005)

Tycho 1572AD Kepler 1604AD SN1006 Cas A 1680AD

TeV electrons in $100\mu G$ field

Chandra observations (x-ray)

Escaping cosmic rays generate their own magnetic field

Magnetic field amplification: how it works in a simple form

Expanding loops of magnetic field

Instability grows until CR get tied to field lines: Loop size = r_g

Automatically saturates with $\lambda \sim r_g$

Unstable magnetic field amplification solves Hillas problem

Boosts field from a few μG to 100s μG

Saturates with wavelength ~ Larmor radius

Hillas limit replaced by new limit

Coupled cosmic transport/magnetic field growth

Theory: Maximum energy = 230
$$\left(\frac{n_e}{cm^{-3}}\right)^{1/2} \left(\frac{\text{velocity}}{10,000 \text{ km s}^{-1}}\right) \left(\frac{\text{radius}}{\text{parsec}}\right) \text{TeV}$$

Confirmed by γ -ray observations

Problem: no known Galactic supernova remnant reaching 1PeV (theory and observation)

Very young supernova remnants (<30 years)

For example SN1987a in nearby Large Magellanic Cloud

Rapid expansion: 30,000 km s⁻¹

Blast wave runs into dense shell: 10⁴cm⁻³

Theory: acceleration to 10PeV

Cosmic rays are available at other outlets

Star clusters/winds from massive stars/multiple interacting supernovae

Galactic Centre

Galactic wind termination shock

High velocity outflows from the Galaxy

Pulsar wind nebulae

Other processes are available

Reconnection

Friction in shear layers

Second order Fermi

Cross-field drift in relativistic winds

LHAASO (Tibet): PeV γ -ray photons from our Galaxy

100TeV

1.4PeV photon from J2032.4102

Cosmic ray energy: \sim 7x γ -ray energy

Could be electron/positrons in pulsar magnetospheres
Or from hadrons stored in dense cloud

Where we stand on cosmic rays in our Galaxy:

Struggle to get to the knee
The ankle is more problematic

Highest energy cosmic rays must come from outside Galaxy because Larmor radius larger than the Galaxy

Ultra-high energy cosmic rays (UHECR, beyond the ankle)

How AUGER & TA fit together (in supergalactic coords)

Positive correlation (not yet 5σ) with

- 1) AGN (active galaxies, quasars, jets...)
- 2) Starburst galaxies

Constraints

- Must come from outside our Galaxy large gyro-radius
- Must originate within 10s Mpc GZK/photo-disintegration losses
- Synchrotron losses rules out compact sources with large magnetic field
- Relativistic shocks (mostly) can't reach 100EeV cosmic rays swept away downstream
- Lower limit on source power
- Must be enough sources to supply the numbers

Possible contenders:

- Powerful radio galaxies
- Starburst galaxies suggested by observation but too low power
- Gamma-ray bursts losses a problem, not enough of them, expect more neutrinos
- Cluster accretion shocks large & long-lived but low velocity

Source power must exceed a threshold

'Hillas condition'

$$\epsilon_{max} < uBL$$

plus 'magnetic power'

$$P_{mag} = uL^2 \frac{B^2}{2\mu_0}$$

gives:

$$P_{mag} = \frac{1}{2} \sqrt{\frac{\varepsilon_0}{\mu_0}} \left(\frac{u}{c}\right)^{-1} \epsilon_{max}^2$$

To reach 100EeV

$$P_{mag} > \left(\frac{u}{c}\right)^{-1} 1.2 \times 10^{44} \text{ erg s}^{-1}$$

BUT

- Total power > P_{mag}
- u ≤ c
- Relies on ideal geometry

In conjunction with other constraints, points heavily to powerful radio galaxies

Cygnus A

Power ~ 10⁴⁶ erg s ⁻¹ Relativistic jet

Cygnus A

Power ~ 10⁴⁶ erg s ⁻¹ Relativistic jet

Problem:

Cygnus A too far away No nearby powerful radio source

Credit: Capella Observatory (optical), with radio data from Ilana Feain, Tim Cornwell, and Ron Ekers (CSIRO/ATNF), R. Morganti (ASTRON), and N. Junkes (MPIfR).

Possible solution

Centaurus A active 20Myr ago (galaxy merger)
Retained cosmic rays still leaking out of lobes
Seeing echoes from nearby starburst galaxies

The data: di Matteo, ICRC 2019

Synthetic map from model: Bell & Matthews 2022

Model works but not unique Too many free parameters

Echoes from 'Council of Giants' (with Andrew Taylor)

Ring of bright galaxies Radius 3.75Mpc

Taylor, Matthews, Bell 2023

Possible CR-accelerating shocks in radio galaxies

Cygnus A too far away
Maybe Cen A looked more like this 20Myr ago (but less powerful)

Cygnus A radio

Need shocks that are:
High velocity but not relativistic
Large & long-lived

Schematic diagram: flux tube

Backflow as Bernoulli flux tube

Flow out of hotspot:

pressure drops sound speed drops velocity increases Mach number increases

→ shocks

Hydro simulations: A jet at 26.11 Myr

James Matthews

Vertical velocity

Log(Mach number)

Slices across jet

SUMMARY: The surprising effectiveness of cosmic ray acceleration

Observations:

Efficient acceleration beyond few PeV in our Galaxy

Extragalactic acceleration to >100EeV

Galactic to extragalactic transition at 0.1 to 1EeV

Young supernova remnants in our Galaxy

Powerful radio galaxies out to 100Mpc

Observation stretches theory to limits

Cosmic accelerators are well-oiled machines working to optimal effectiveness

Not what we expect of plasma devices

