

A biased view on SFB1491 from an observer's perspective

Anna Franckowiak

Content

Research question (1): What are the signatures of the interplay between magnetized, turbulent astrophysical plasmas and cosmic rays, and what can they tell us about the origin of cosmic rays?

- Milky Way
- Seyfert Galaxies
- TDEs

Milky Way – Galactic Center

Interesting and complicated region

PeVatron found by H.E.S.S.

Galactic Center Excess in Fermi-LAT data

Talk by Dominik Elsässer

Milky Way – Galactic Center

Findings:

- counts and fluxes favour isotropic diffusion
- spectra favour anisotropic diffusion
- E⁻² source spectra favoured

Doerner et al., *PoS* ICRC2023 (2023) 584 Becker Tjus et al., submitted (2022)

Modeling of TeV emission in 3D:

- gas distribution
- Photon fields
- Magnetic field (large scale & small-scale imprints of molecular clouds and non-thermal filaments)
- Test different different anisotropies of diffusion tensor
- → compare to H.E.S.S. measurements

Milky Way – Fermi Bubbles

Large Scale Excess seen in gamma-ray, microwave and X-ray data

Milky Way – Fermi Bubbles

Large Scale Excess seen in gamma-ray, microwave and X-ray data

Credit: NASA

Milky Way – Fermi Bubbles

Modeling of GeV emission using GALPROP→ compare to Fermi-LAT measurements

Status: repeated previous analysis with 12 instead of 4 years of data, new foreground models

On-going: study spectrum for different bubble regions

Blomenkamp et al. in prep

Milky Way – Multi-wavelength view

Milky Way – Neutrinos as new ingredient

~10% of IceCube's astrophysical neutrinos

Talk by Mirco Hünnefeld

Seyfert Galaxies – Neutrino Sources?

Seyfert Galaxies

Credit: ESO/L. Calçada and M. Kornmesser

Seyfert Galaxies – Corona, Starburst

Seyfert Galaxies – Jet?

Study of jet contribution using AM³ code

→ jet power negligible

CRPropa ready to be used as well

SFB supported workshop for comparison of leading numerical leptohadronic modeling codes

https://indico.uni-wuppertal.de/event/230/

Seyfert Galaxies – Molecular Clouds

Δα(arcsec)

Surprise: Two 100 TeV Neutrinos from Seyfert Galaxy NGC 7469

NGC 7469

NGC 1068, 4.2 sigma neutrino source

Talk by Giacomo Sommani

Estimated chance coincidence ~3.5 sigma

Sommani et al. in prep

Surprise: Two 100 TeV Neutrinos from Seyfert Galaxy NGC 7469

Estimated chance coincidence ~3.5 sigma

Sommani et al. in prep

Plan: Model the multi-wavelength data is the same way as NGC 1068

Tidal Disruption Events

Credit: DESY, Science Communication lab

Tidal Disruption Events

- Unique opportunity to study accretion disk (and jet) formation
- Candidate neutrino sources → particle acceleration

Tidal Disruption Events – Radio and gamma rays SFB1491

Apertif survey → circular polarization

Fermi-LAT → gamma-ray time evolution

Tidal Disruption Events – Radio and gamma rays

r-band g-band 3.0 1.0 0.5 19 16 Peak Difference Magnitude

Apertif survey: leakage response needs to be estimated → Still waiting for full circular polarization catalog

Search for gamma-rays from optically detected

TDEs → upper limits, relevant to constraints on jet

properties Veres et al. in prep

Tidal Disruption Events – Optical follow-up of neutrinos

1. High-energy neutrino arrives

2. Observations with ZTF

3. Algorithm identifies candidates

Remove unrelated transients (e.g. Type Ia Supernovae)

4. Additional follow-up observations for interesting candidates

Three TDE candidates found in spatial coincidence with high-energy neutrinos

Another surprise: Second Flare from AT2019aalc ("Lancel") – Repeating TDE?

Another surprise: Second Flare from AT2019aalc ("Lancel") – Repeating TDE?

Initiated large multimessenger campaign (lead by RUB)

Is it a repeating TDE or just "normal" AGN variability?

Talk by Patrik Veres

Veres et al. in prep

Another surprise: Second Flare from AT2019aalc ("Lancel") – Repeating TDE?

- Extensive radio observations by ATCA indicates long-lasting outflow
- EVN long-baseline observations (source detected, hint for outflow, second proposal submitted)

Rolf Kuiper at Duisburg-Essen joined

- MHD simulations of TDEs
- New student, Luke Conmy started Nov. 1 → modeling the disruption phase
- Postdoc Vardan Elbakyan Modeling → modeling the accretion phase

Challenges:

- Numerical: Transition from hydrostatic initial condition to extremely dynamic evolution
- Scientific: Connecting to A6 most likely requires modeling the final accretion event as well

The Large Array Survey Telescope

Photometry survey: 32 telescopes (out of 48) installed in Israel, one mount equipped with RUB polarization filters

→ First verification of the system through measurements of standard polarized and non-polarized stars

4-telescope polarization prototype at RUB observing platform under construction (thanks to SFB funding)

Goal: AGN monitoring

E. Ofek et al. "The Large Array Survey Telescope -- System Overview and Performances", PASP 135, 1048 (2023)

S. Ben-Ami et al. "The Large Array Survey Telescope -- Science Goals ", PASP 135, 1050 (2023)

Summary

- Great efforts to bring together
 - Observers (e.g. radio, optical, gamma-rays, neutrinos)
 - Observers and theorists (e.g. modeling of NGC 1068)
 - Particle and astroparticle physics (CRPropa)