

HADRONIC INTERACTIONS IN CRPROPA

Cosmic Interacting Matters from source to signal

Funded by

Deutsche Forschungsgemeinschaft German Research Foundation

Julien Dörner | julien.doerner@rub.de | SFB 1491 General Assembly | 09.11.2023

motivation

Impact of Galactic Cosmic Rays

Impact of Galactic Cosmic Rays

4

bunch of particles can be created

- $p + p \rightarrow \pi^0 \rightarrow \gamma \gamma$ dominant process for diffuse galactic gamma-ray emission
- $p + p \rightarrow \pi^{\pm} \rightarrow e^{\pm} \nu_e \nu_\mu$ production of (Galactic) neutrinos as seen in IceCube
- $p + p(A) \rightarrow \overline{p}, \overline{n}, \overline{He}$ seen by AMS-02
- 5 **CR**/Propa julien.doerner@rub.de

Final state of interaction

- *e*⁻, *e*⁺
- v_e, \overline{v}_e
- $\nu_{\mu}, \overline{\nu}_{\mu}$
- $p, \overline{p}, n, \overline{n}$

includes up scattered proton and primary after interaction

Crossection models

cross-section: inclusive and inelastic

Inelastic cross-section: Kafexhiu+ (2014)

 $\sigma_0(T_p) = [30.7 - 0.96 \log(x) + 0.18 \log^2(x)] \times [1 - x^{1.9}]^3 \text{ mb}$

$$x = \frac{T_p}{T_p^{th}}$$
; $T_p^{th} = 2m_{\pi} + \frac{m_{\pi}^2}{2 m_p} \approx 0.2797 \text{ GeV}$

 \rightarrow total interaction probability:

$$p = n_{gas} \cdot \sigma \cdot \Delta s$$

SFB1491

8 **CR**/Propa julien.doerner@rub.de

cross-section: inclusive and inelastic

Differential inclusive cross-section:

For each secondary species *s*

$$\frac{d\sigma^{(s)}}{d\epsilon}(T_p,\epsilon) = \sigma_0(T_p) \cdot \frac{dN_s}{d\epsilon}$$

cross-section: inclusive models

Name	proj	targ	Incl. secondaries	Primary energy	Secondary energy
Kelner+ (2006)	р	р	γ, e, u_e, u_μ or π	$0.1 - 10^5 \text{TeV}$	$10^{-3} \le \frac{\epsilon}{T_p} \le 1$
Kafexhiu+ (2014)	р	р	γ	$T_p < 512 { m ~TeV}$	As primary
AAfrag Kachelrieß+ (2019)	р, Не, С, АІ, Fe, <i>p</i> ̄	p, He	$\gamma, e, v_e, v_\mu, p, n, \overline{d}, \ {}^3\overline{H}e, \ {}^3\overline{H}$	Proton: $5 - 10^{11} \text{ GeV}$	As primary
ODDK Orusa+ (2022, 2023)	$\begin{array}{c}p, {}^2_1H, {}^3_2He, {}^4_2He, \\ {}^{12}_6C, {}^{13}_6C, {}^{14}_7N, \\ {}^{15}_7N, {}^{16}_8O\end{array}$	p, He	e [±] ,γ	$e^{\pm}: 10^{-4} - 10^3 \text{ TeV}$ $\gamma: 10^{-4} - 10^4 \text{ TeV}$	10 ⁻⁵ – 10 TeV 10 ⁻⁵ – 10 ² TeV

CRPropa Plug-In

Precalculated data – for each secondary

• 2D – table with a CDF

$$\sigma_{\rm CDF}^{(s)}(T_p,\epsilon) = \int_{E_{th}}^{\epsilon} \mathrm{d}\epsilon' \ \frac{\mathrm{d}\sigma^{(s)}}{\mathrm{d}\epsilon'}$$

- Correction factor for missing energy loss $f_{loss}^{(s)}$
- Data are precalculated and collected with a config file
- Individual cross-section can be loaded and added to the module

workflow design

perform interaction

testing mean free path

Mean free path

- 10⁴ primary protons per energy
- Constant target density $n_H = 10^8 \text{ m}^{-3}$
- Fixed propagation step $\Delta s = 100 \text{ pc}$
- Detect length for first interaction

SFB1491

RUB

testing yields

Simulation setup for testing yields

- Fixed primary energy T_p
- 10⁵ calls of performInteraction
- Calculate spectra of secondary particles
- Compare to shape of differential cross section (normed at $10^{-2} T_p$)

testing energy loss

Energy loss from crossection

Total energy loss per unit time:

$$-\frac{dE}{dt}(T_p) = \int_{E_{th}}^{T_p} d\epsilon \ v \epsilon n(\vec{r}) \sum_{s} \frac{d\sigma^{(s)}}{d\epsilon}(T_p, \epsilon)$$

Approximation by Krakau & Schlickeiser (2015)

$$\frac{dE}{dt}(T_p) \approx 3.85 \cdot 10^{-16} \cdot \left(\frac{n}{10^6 \text{ m}^{-3}}\right) \cdot T_p^{1.28} \cdot \left(T_p + 200 \text{ GeV}\right)^{-0.2} \text{ GeV/s}$$

Energy loss sampling

- 10⁵ particles per primary energy
- Primary (kinetic energy) $1 \le \frac{T_p}{\text{GeV}} \le 10^8$ with 70 points in logspace
- Density $n_H = 10^8 \text{ m}^{-3}$
- Propagate only one step with $\Delta s = 0.01 \lambda_{mfp}$

$$\frac{dE}{dT} \approx \frac{\Delta E}{\Delta s/c}$$

Energy loss

application Giant Molecular Cloud

Giant Molecular Cloud – Rho Oph

- Spherical dens cloud $n(r) = \frac{n_0}{1 + \frac{r}{R_0}}$
- Injection on a sphere around the cloud
- 10^8 particles with $1 \text{ GeV} \le T_p \le 10^7 \text{GeV}$
- Direct detection of created γ -rays •
- Injection spectrum reweighted to LIS

$$j_p(E) = 2.3 \ E^{1.12} \ \beta^{-2} \left(\frac{E + 0.67 \ \text{GeV}}{1.67 \ \text{GeV}}\right)^{-3.93}$$

particle

Resulting gamma-ray flux

conclusion

Conclusion

- p-p interactions as a plug-in with custom secondaries
- Input: pre tabulated cross section for each secondary
- Tables available for: AAfrag, Kafexhiu, Kelner, ODDK
- Plug in tested for yields and energy loss
- results for different models with an uncertainty ~ 2 for astrophysical application

Backup slides

Differential cross-section models - Kelner

Paper: Energy range:

Included secondaries: interaction:

Kelner et al., PRD (2006) 034018, 74(3) $100 \text{ GeV} < T_p < 10^5 \text{ TeV}$ $10^{-3} \le \frac{\epsilon}{T_p} \le 1$ e^{\pm} (one species), ν_e , $\nu_{\mu}^{(1)}$, $\nu_{\mu}^{(2)}$ or $\pi^{\pm,0}$ p-p

Differential cross-section models - Kafexhiu

Kafexhiu et al. PRD 90, 123014 (2014)

Included secondaries: γ

interaction: p-p

Paper:

- Includes the $1\pi^0$ and $2\pi^0$ chanel
- Different parameters for different event generators

Differential cross-section models - ODDK

Paper:

Energy range:

Included secondaries: interaction:

Orusa et al. (2022, 2023) $100 \text{ MeV} < T_p^{(e)} < 10^3 \text{ TeV}$ $10 \text{ MeV} < \epsilon_{\rho} \leq 10 \text{ TeV}$ 100 MeV < $T_p^{(\gamma)}$ < 10⁴ TeV 10 MeV < $\epsilon_{\gamma} \le$ 100 TeV e^{\pm} (separate), γ projectile: ¹H, ²H, ³He, ⁴He, ¹²C, ¹³C, ¹⁴N, ¹⁵N, ¹⁶O target: p, He

Differential cross-section models - AAfrag

Paper:

Kachelrieß et al, (2019), Computer Physics Communications, 245, 106846

Included secondaries:

 $e^{-}, v_{e}, v_{\mu}, \gamma, p, n, \overline{d}, {}^{3}\overline{He}, {}^{3}\overline{H}$

interaction: p-p, p-He, He-p, He-He, C-p, Al-p, Fe-p, *p*-р, *p*-р

