

- Long-lived neutral particles weakly decaying into two charged hadrons
- Displaced decay topology
 - $\tau(K_S^0/\Lambda^0) \approx 0.9/2.6 \times 10^{-10} \,\text{s}$ vs. $\tau(B^0) \approx \mathcal{O}(10^{-12} \,\text{s})$
- Huge cross-sections ($\mathcal{O}(1\,\mathrm{b})$ vs. $\sigma(b) \approx \mathcal{O}(100\,\mu\mathrm{b})$)
 - $K_S^0 \to \pi^+\pi^- (\Gamma_i/\Gamma \approx 69.2\%)$
 - $\Lambda^0 \to p\pi^- + \overline{\Lambda}{}^0 \to \overline{p}\pi^+ (\Gamma_i/\Gamma \approx 63.9\%)$
- Small phase space, soft p, p_T spectra
 - \rightarrow Lower reconstruction efficiency than b, c

R. B. Leighton, S. D. Wanlass, and C. D. Anderson, The decay of V^0 particles, Phys. Rev. 89, 148 (1953).

1. Detector commissioning (short-term)

1. Detector commissioning (short-term)

- 5x higher \mathcal{L} in Run 3
- Major upgrades of hard- and software
- $ightarrow V^0$ measurement allows unbiased evaluation of detector performance, especially the tracking
 - → Also analyse Run 2 data for comparison

P. Fernandez Declara, D.H. Perez Campora, J. Garcia-Blas, D. Vom Bruch, J.D. Garcia, N. Neufeld, IEEE Access 7, 91612 (2019).

1. Detector commissioning (short-term)

- 5x higher \mathcal{L} in Run 3
- Major upgrades of hard- and software
- $\rightarrow V^0$ measurement allows unbiased evaluation of detector performance, especially the tracking
 - → Also analyse Run 2 data for comparison

- 1. Detector commissioning (short-term)
- 2. Strangeness enhancement (long-term)

- 1. Detector commissioning (short-term)
- 2. Strangeness enhancement (long-term)
- Strange hadron production → non-perturbative QCD
- Enhancement of strange-hadron production in high-multiplicity events observed by ALICE
- Possible solution of "muon puzzle" in astroparticle physics
- Muon number also sensitive to meson-tobaryon-ratio
- → LHCb offers unique environment to test this

Ratio of yields to ($\frac{1}{2}$

 Δ_Z

V^0 cross-section ratios

Cancels in ratios

>1M V^0 decays from few minutes of data taking in nominal conditions + good background rejection

No trigger efficiencies

$$R(\bar{\Lambda}^{0}, K_{S}^{0}) = \frac{\sigma(pp \to \bar{\Lambda}^{0}X)}{\sigma(pp \to K_{S}^{0}X)} = \frac{\mathscr{L}N(\bar{\Lambda}^{0} \to \bar{p}\pi^{+}) \,\varepsilon_{K_{S}^{0} \to \pi^{+}\pi^{-}} \mathscr{B}(K_{S}^{0} \to \pi^{+}\pi^{-})}{\mathscr{L}N(K_{S}^{0} \to \pi^{+}\pi^{-}) \,\varepsilon_{\bar{\Lambda}^{0} \to \bar{p}\pi^{+}} \mathscr{B}(\bar{\Lambda}^{0} \to \bar{p}\pi^{+})}$$

$$R(\bar{\Lambda}^{0}, \Lambda^{0}) = \frac{\sigma(pp \to \bar{\Lambda}^{0}X)}{\sigma(pp \to \Lambda^{0}X)} = \frac{N(\bar{\Lambda}^{0} \to \bar{p}\pi^{+}) \varepsilon_{\bar{\Lambda}^{0} \to \bar{p}\pi^{-}}}{N(\bar{\Lambda}^{0} \to p\pi^{-}) \varepsilon_{\bar{\Lambda}^{0} \to \bar{p}\pi^{+}}}$$

V^0 candidates

- Data recorded in 90 s (78 nb⁻¹)
- Pairs of tracks leaving hits in VELO + SciFi and forming vertex

- Cut optimised in Run 2 analysis
- $\mathcal{F}_{IP}(K_S^0/\Lambda^0) > 2.6/1.5$
- Additional cut IP(Λ^0) < 0.13 mm to suppress hyperon (Ξ^0, Ξ^-) contributions

 Signal yield + mass resolution highly dependent on spatial detector alignment

$$\mathcal{F}_{IP}(V^0 \to h^+ h^{(\prime)-}) = \log_{10}(IP(h^+)) + \log_{10}(IP(h^{(\prime)-})) - \log_{10}(IP(V^0))$$

SciFi Tracker

- 3 tracking stations
- 4 layers per station
 - \rightarrow U, V rotated by $\mp 5^{\circ}$
- Divided into 4 quarters in x-y-plane
 - \rightarrow A- (x > 0) and C-side (x < 0)
 - \rightarrow Top (y > 0) and bottom half (y < 0)
- Each side persists of 5 modules (6 for T3) with 2x4 fibre mats each separated by a mirror at y=0

SciFi Spatial Alignment

- Real detector does not resemble ideal detector perfectly
 - Need to find translations and rotations of detector elements from ideal position (applies to all subdetectors)

Impact of spatial alignment: V7 vs. V10

- Λ^0
 - $\rightarrow N_{\text{sig}}: 13582 \rightarrow 49971$
 - $\sigma : 1.262 \to 1.07$
 - \rightarrow SciFi hits(p): 11.04 \rightarrow 11.33
 - → SciFi hits(π^-): 10.18 → 10.92
- $\bar{\Lambda}^0$
 - $\rightarrow N_{\rm sig}: 23187 \rightarrow 53879$
 - $\rightarrow \sigma: 1.18 \rightarrow 1.055$
 - \rightarrow SciFi hits(\bar{p}): 10.82 \rightarrow 11.12
 - → SciFi hits(π^+): 10.79 → 11.06
- Remaining charge asymmetries, but smaller
- No improvement found in further checks

Agreement between data and MC

- Disagreement between data and simulation in key variables
- Not fully clear whether only due to detector misalignments
- Efficiencies estimated on simulation
- Corrections to reconstruction and tracking efficiencies in the works

Preliminary ratio comparison

Prospects for 23 data

Summary

- \cdot V^0 production cross-section ratios contribute to validation of the LHCb Upgrade I detector paving the way towards stable physics programme in Run 3
 - → Presented current status of one of the first Run 3 measurements
 - → Crucial for precision measurements by LHCb in Run 3 contributing to F4
- Emphasis on future measurements of strangeness enhancement in intersection of particle and astroparticle physics
 - → Baryon-meson-ratio measurement in the forward region as input for generator tunings of atmospheric showers
 - → Possible solution to muon puzzle

Thanks for your attention!