

CRC 1491 General Assembly 2023

Image courtesy: IceCube Collaboration

e Je

e e

х Ve

è

VII

Vu

TC

 π

Propagation in AGN Jets: Basic Structure

3 Density-Dependend Multimessenger Modelling of Blazar Jets | CRC 1491 General Assembly | marcel.schroller@rub.de

Challenges I – AGN Jet Length Scale Separation

Challenges II – Energy Ranges (Multiwavelength)

Challenges III – Time Variability

Challenges IV: Ambiguity of Signals

Abdo et al. ApJ (2011)

Challenges IV: Ambiguity of Signals

Abdo et al. ApJ (2011)

Setup: Scheme

10 Density-Dependend Multimessenger Modelling of Blazar Jets | CRC 1491 General Assembly | marcel.schroller@rub.de

Setup: Parameter (excerpt)

Parameter	Symbol	Value
Plasmoid Radius	R	10 ¹³ m
Plasmoid Propagation Start	$r_{\rm start}$	10 ¹⁴ m
Plasmoid Propagation End	r _{end}	$r_{\text{start}} + 10 \text{ pc}$
Plasmoid Lorentz Factor	Γ	10
Magnetic Field Initial RMS Value	B_0	1 G
Proton (primary) Initial Energy	$E_{p, inj}$	10 ⁸ GeV
Proton Target Density (up-scaled)	$n_{0, \text{plasma}}$	10^{15} m^{-3}
Electron Minimal Lorentz Factor	$\gamma_{e,\min}$	10
Electron Maximal Lorentz Factor	$\gamma_{e, \max}$	10^{6}
Electron Spectral Index	α_e	2.6
Energy Density Ratio U_p/U_e	X	1/100
Accretion Disc Inner Radius	$3R_s$	$8.86 \cdot 10^{11} \text{ m}$
Accretion Disc Outer Radius	$R_{\rm acc}$	10 ¹⁴ m
Accretion Disc Temperature	T_0	10 eV/k_b

Hörbe et al. MNRAS (2020)

Assumptions:

- Equipartition: $U_B = U_p + U_e$
- Purely turbulent field with $l_c = 10^{-2}R$
- Injection monochromatic (Tab. 1) or power law w. spectral index α_p = 2;
 E_{min} = 10⁸ GeV

 $E_{max} = 10^{11} \text{ GeV}$

- Instantaneous injection
- Black body field of accretion disk Doppler de-boosted inside plasmoid

RUHR

UNIVERSITÄT BOCHUM RUR

 Synchrotron radiation of ambient electrons

Results: Combined Messengers (Pure Hadronic)

12 Density-Dependend Multimessenger Modelling of Blazar Jets | CRC 1491 General Assembly | marcel.schroller@rub.de

Time & Density Dependence: Current Projects

Different, each promising approaches to MM modelling of AGN jets exist

General approach:

- Solve transport problem via FP-equation
- Impose energy losses and secondary particle production, find steady-state solution wrt. injection & escape
- Goal: Fit model parameters to SED and lightcurves - Simultaneously (!)

Code	AM ³	PARIS	ΑΤΗΕνΑ	Böttcher	CRPropa	AGNPropa
Reference	Gao et al. (2017)	Cerruti et al. (2015)	Dimitrakoudis et al. (2012)	Böttcher et al. (2013)	3	CIM- Development
Transport equation	yes	yes	yes	yes	yes	yes
Ballistic	no	no	no	no	yes	yes
steady state	yes	yes	yes	yes	yes	yes
time depen- dent	yes	no	yes	no	yes	yes
B-field	turbulent (isotropic)	turbulent (isotropic)	turbulent (isotropic)	turbulent (isotropic)	turbulent (isotropic), regular (helical)	turbulent (isotropic, anisotropic, intermit- tent); regular (helical)
Diffusion	1-dim	1-dim	1-dim	1-dim	1-dim	3-dim
Photohadron	yes	yes	yes	yes	yes	yes
Hadron- hadron	no	no	no	no	yes	yes (F4)
Prompt component	no	no	no	no	no	yes (F3)

Time & Density Dependence: A Comparison

15 Density-Dependend Multimessenger Modelling of Blazar Jets | CRC 1491 General Assembly | marcel.schroller@rub.de

Callback: Ambiguity of Signals

Abdo et al. ApJ (2011)

Extension to Lepto-Hadronic Simulations

Quotient relative readouts - Chained simulations vs. cont. sim

Extension to Lepto-Hadronic Simulations

19 Density-Dependend Multimessenger Modelling of Blazar Jets | CRC 1491 General Assembly | marcel.schroller@rub.de

Further Implications (Teaser): Spectra

Telegrapher's equation for transitional time scales:

Becker Tjus, ..., MS et al. MDPI Physics (2022) arXiv:2202.01818

Prediction of spectral breaks from spatial and magnetic field configurations for AP neutrinos and gamma-rays from AGN jets!

RUHR

UNIVERSITÄT BOCHUM

Transport: Diffusion Coefficients

- Averaging κ(t) for late times (plateaus) to approximate the diffusion coefficient:
 - $\kappa = \lim_{t \to \infty} \kappa(t) \approx < \kappa(t) >_{t \gg t_0}$
 - Input for diffusive simulations (if applicable: B.Thesis V. Kiselev)

RUHR

UNIVERSITÄT BOCHUM RUB

- Additional modifications in terms of additional/improved photon fields and density structures are implemented.
- Extension of established test-particle simulation framework for hadrons in AGN jet plasmoids to second-order leptonic processes is in progress.
- Validation via a lot of testing with existing numerical and semianalytical models for one-zone problems is inbound, so stay tuned!
- Propagational effects on signatures are investigated, with first promising results.

Glad to take questions!

VII

Image courtesy: IceCube Collaboration Contact: marcel.schroller@ruhr-uni-bochum.de

Se

e

State-of-the-Art catalogue: LepHad-Blazars

ad-blazars Public			
sues 기 Pull requests	🕞 Actions 🖽 Projects 😲 Security 🗠	\preceq Insights	
	😢 main 🔹 🍄 1 branch 💿 0 tags		Go to file
	() xrod Updated reference with arXiv link	¢	4cdf9a9 on Aug 10 🕚 33
	model_results		2 mo
			2 mo
	README.md		la
	🗋 example.ipynb		2 mo
	model_parameters.csv	Added black hole masses to model_parameters.csv	2 mo
	i≘ README.md		
	lephad-blazars ∂		
	Results from numerical leptohadror	nic simulations of 324 gamma-ray blazars.	
	Based on the publication:		
	X Rodrigues, V S Paliya, S Garrappa Modeling of 324 Gamma-ray Blazar	, A Omeliukh, A Franckowiak and W Winter, <i>Leptoh</i>	adronic Multimessenger

- 324 gamma-ray Fermi blazar SEDs modeled by X. Rodrigues et al. (arXiv 2307.13024)
- Approach for finding parameters:
 - Simulate purely leptonic onezone model in e.g. IR, optical, UV, GeV range, find parameter
 - Superimpose hadronic signatures for $f \ge 300$ GHz
 - Then: Combined fit of parameters for all wavelengths
- Suitable for detailed comparisons!

Parameter Space

A7: Density-dependence of the temporal structure in the multimessenger spectrum of blazars

Parameter setup for AGNPropa (working example):

- Environment, interactions and scalings are (conservatively) chosen from literature
- Primary protons are either injected monochromatic with $E_{\rm p}=10^8\,{\rm GeV}$ or power-law-like distributed with $\alpha_{\rm p}=2$
- Detailed justification and in-depth explanation in Hoerbe et al. MNRAS (2020) and references therein
- Table on the right-hand-side illustrates the model with a selection of parameters

Parameter	Symbol	Value
Plasmoid radius	R	10 ¹³ m
Propagation distance (Plasmoid's rest-frame)	D	10 pc
Plasmoid Lorentz factor	Г	10
Magnetic field: Initial RMS value	B ₀	1 G
Accretion disk: Inner radius	3 <i>R</i> _S	8.86 · 10 ¹¹ m
Accretion disk: Outer radius	R _{acc}	10 ¹⁴ m
Accretion disk: Temperature (Black body)	T ₀	10 eV/k _b

System: parameter comparison

i	P _i	Hoerbe et al. (<i>V_i</i>)	Schroller et al. (<i>W_i</i>)
1	Radius of plasmoid R	1e13 m	1e13 m
2	Spacing Δs	2*R	2*R
3	timestep Δt	33358 s	33358 s
4	# timesteps N_t	308557	308557
5	# spatial steps $N_{x,y,z}$	2	2

Magnetic field: former parameter

i	P _i		V _i	W _i
6	# of gridpoints	N _{Gr}	256	512
7	Spacing	Δs_B	R / (128)	R /(256 * 64)
8	Root Mean Value	B_0	1 G	1 G
9	Correlation length	l_c	10^(-2) R	10^(-2) R
10	Lmin	l_{min}	R / (64)	R / (256 * 32)
11	Lmax	l_{max}	R / (32)	R/(32)
12	# of spatial scalings	$N^B_{x,y,z}$	2	4
13	# of temporal scalings	N_t^B	308557	617114
14	Scaling: spacing	Δs^B	2 * R	R
15	Scaling: timesteps	Δt^B	33358 s	16679

Propagation and energy: comparison parameter

i	P _i		V _i	W _i
16	Propagation method	Р	СК	BP
17	Min. step size	Δx_{min}	10^(-2) R	10^(-5) R
18	Max step size	Δx_{max}	10^(-2) R	10^(-3) R
19	Precision	ε	10^(-3)	10^(-3)
20	Injection energy	Ε	10^(8) GeV	10^(8) GeV
21	Max. trajectory length	d	10 pc	10 pc
22	Minimum energy	E_{min}	10^(2) GeV	10^(2) GeV
23	# of particles	Ν	10000	10000

Propagation Effects

Transport in Turbulent Fields: Ballistic vs. Diffusive

Transport: Running Diffusion Coefficient

Setup: Results (Running Diffusion Coefficient)

34 Density-Dependend Multimessenger Modelling of Blazar Jets | CRC 1491 General Assembly | marcel.schroller@rub.de

Propagation Effects: Comparison @ 10⁵ GeV

Setup: Results (Diffusion Coefficients)

36 Density-Dependend Multimessenger Modelling of Blazar Jets | CRC 1491 General Assembly | marcel.schroller@rub.de

Propagation Effects: Comparison @ 10⁸ GeV

37 Density-Dependend Multimessenger Modelling of Blazar Jets | CRC 1491 General Assembly | marcel.schroller@rub.de

