MODELING TIME-DEPENDENT DIFFUSIVE SHOCK ACCELERATION IN THE TRANSITION REGION

SFB 1491 GENERAL ASSEMBLY -

S. AERDKER, L. MERTEN, J. BECKER TJUS

Becker Tjus, Merten, 2020

TRANSITION REGION...

FROM GALACTIC TO EXTRA-GALACTIC ORIGIN

Image Credit: NASA, ESA, Hubble

Image Credit: NASA

RE-ACCELERATION AT THE GALACTIC WIND TERMINATION SHOCK

- Diffusive Shock Acceleration (DSA) at the Galactic Wind Termination Shock (GWTS)
- CRs accelerated in the Galactic disk propagate outwards and are re-accelerated at the GWTS
- A fraction of re-accelerated CRs is able to propagate back to the Galaxy (Merten et al., 2018)

TRANSITION REGION...

FROM BALLISTIC TO DIFFUSIVE PARTICLE TRANSPORT

CRPropa3.2

Cosmic Ray Propagation
Framework

$$
\frac{\partial n}{\partial t}+\underbrace{+\vec{u} \cdot \nabla n}_{\text {advection }}=\underbrace{\nabla \cdot(\hat{\kappa} \nabla n)}_{\text {spatial diffusion }}+\underbrace{\frac{1}{p^{2}} \frac{\partial}{\partial p}\left(p^{2} D \frac{\partial n}{\partial p}\right)}_{\text {momentum diffusion }}+\underbrace{\frac{1}{3}(\nabla \cdot \vec{u}) \frac{\partial n}{\partial \ln p}}_{\text {adiibatic energy change }}+S(\vec{x}, p, t)
$$

$$
\mathrm{d} \vec{x}=(\nabla \hat{\kappa}+\vec{u}) \mathrm{d} t+\sqrt{2 \hat{\kappa}} \mathrm{~d} \vec{\omega}_{t}, \quad \mathrm{~d} p=-\frac{p}{3} \nabla \cdot \vec{u} \mathrm{~d} t
$$

Pseudo-particles are propagated with Stochastic Differential Equations

MODELING DSA WITH STOCHASTIC DIFFERENTIAL EQUATIONS

- Interplay between diffusion, advection and adiabatic heating is responsible for energy gain at the shock:

$$
\begin{aligned}
& \vec{x}_{t+1}=\vec{x}_{t}+[\nabla \cdot \hat{\kappa}+\vec{u}(\vec{x})] \Delta t+\sqrt{2 \hat{\kappa}} \sqrt{\Delta t} \vec{\eta}_{t} \\
& p_{t+1}=p_{t}-\frac{p}{3} \nabla \cdot \vec{u} \Delta t
\end{aligned}
$$

One-dimensional wind profile with shock at $x=0$, compression $q=u_{1} / u_{2}=4$

CONSTRAINTS

- Pseudo-particles have to encounter the diverging advection field to gain energy:

$$
\left[\frac{\partial \kappa}{\partial x}+u(x)\right] \Delta t
$$

```
Krülls & Achterberg,
1 9 9 4
```

- Diffusion must be high enough to cross the shock front multiple times:
- $L_{\mathrm{sh}}<\sqrt{2 \kappa \Delta t}$
- Shock width must be small compared to advection and diffusion to model infinitely thin shock:
- $\epsilon=u_{1} L_{\text {sh }} / \kappa_{1}$ sufficiently small

TIME-DEPENDENT DSA...

AT 1D PLANAR SHOCK WITH CONSTANT DIFFUSION

- SDE approach with CRPropa3.2
- Integrating transport eq. with VLUGR3
- Shock gets active at $\tilde{t}=0$

Aerdker, Merten, Becker Tjus, Walter, Effenberger, Fichtner, submitted to JCAP

TIME-DEPENDENT DSA...

AT 1D PLANAR SHOCK WITH ENERGY-DEPENDENT DIFFUSION

ACCELERATION TIME SCALE

- Mean acceleration time to momentum p depends on:
- energy-dependence α of diffusion coefficient
- $\tau_{\mathrm{acc}}=\frac{3}{u_{1}-u_{2}}\left(\frac{\kappa_{1}}{u_{1}}+\frac{\kappa_{2}}{u_{2}}\right)$

TIME-DEPENDENT DSA...

AT 1D PLANAR SHOCK WITH SPATIAL-DEPENDENT DIFFUSION

$$
\kappa / v^{2}=\mathrm{const}
$$

Student
Project, SOWAS, Jurek Völp

TIME-DEPENDENT DSA...

AT A SPHERICAL GWTS

- $\kappa(E)=5 \cdot 10^{24} \mathrm{~m}^{2} / \mathrm{s}\left(E / E_{0}\right)^{\alpha}$
- $E_{0}=10^{6} \mathrm{GeV}$
- Spectrum \& number density at $R_{\text {sh }}=250 \mathrm{kpc}$

3D TIME-DEPENDENT DSA...

AT A SPHERICAL SHOCK \& SPIRAL MAGNETIC FIELD

Aerdker, Merten, Becker Tjus, Walter, Effenberger, Fichtner, PoS, ICRC 2023

- Energy gain depends on effective diffusion over the shock front

- Angle between shock front and magnetic field
- Anisotropy of diffusion tensor

$$
\hat{\kappa}=\left(\begin{array}{ccc}
\kappa_{\|} \epsilon & 0 & 0 \\
0 & \kappa_{\|} \epsilon & 0 \\
0 & 0 & \kappa_{\|}
\end{array}\right)
$$

SUMMARY

```
MODELING TIME DEPENDENT DSA WITH CRPROPA
```

- DSA modeled with DiffusionSDE module of CRPropa3.2
- Time-dependent spectra at the shock
- CandidateSplitting to enhance statistics
- Energy-dependent \& spatial-dependent diffusion, anisotropic diffusion
- 3D spherical GWTS \& spiral magnetic field

- Acceleration time scale

PROPAGATION OUT OF \& BACK TO THE GALAXY

CANDIDATE SPLITTING

TO ENHANCE STATISTICS AT HIGH ENERGIES

Split candidates in n copies depending on spectral slope, when crossing energy bins and assign weights

TIME-DEPENDENT DSA...

INJECTING A PRE-ACCELERATED SPECTRUM

Aerdker, Merten, Becker Tjus, Walter,
Effenberger,
Fichtner, JCAP
(under review)

DIFFUSION-ADVECTION EQUATION APPROXIMATE STATIONARY STATE WITH CRPROPA

Distribution $f_{t}(x, t)$ of pseudo-particles at time t

Summed distribution of pseudo-particles $f(x, t)=\sum f_{t}(x, t) \Delta T_{i}$

2. TESTCASE: 1D SUPERDIFFUSION

Effenberger et al. (in preparation)

SUPERDIFFUSION

STOCHASTIC DIFFERENTIAL EQUATION:
 LEVY FLIGHTS

$$
\begin{aligned}
& \mathrm{d} x=u(x) \mathrm{d} t+\sqrt{2} \kappa^{1 / 2} \mathrm{~d} W_{t} \\
& \mathrm{~d} x=u(x) \mathrm{d} t+\sqrt{2} \kappa^{1 / \alpha} \mathrm{d} L_{\alpha, t}
\end{aligned}
$$

- Wiener process $\mathrm{d} W_{t} \propto \eta_{W} t^{1 / 2}$ is exchanged by Lévy process $\mathrm{d} L_{\alpha} \propto \eta_{L} t^{1 / \alpha}$
- Random numbers η_{L} are drawn from α-stable Lévy distribution.

Sample of 10^{7} random numbers drawn from a α-stable Lévy distribution

SUPERDIFFUSION

STOCHASTIC DIFFERENTIAL EQUATION:
 LEVY FLIGHTS

MODELING DSA WITH STOCHASTIC

 DIFFERENTIAL EQUATIONS- SDE is integrated with Euler-Maruyama Scheme:

$$
\vec{x}_{t+1}=\vec{x}_{t}+[\nabla \cdot \hat{\kappa}+\vec{u}(\vec{x})] \Delta t+\sqrt{2 \hat{\kappa}} \sqrt{\Delta t} \vec{\eta}_{t}
$$

$$
\hat{\kappa}=\left(\begin{array}{ccc}
\kappa_{\|} \epsilon & 0 & 0 \\
0 & \kappa_{\|} \epsilon & 0 \\
0 & 0 & \kappa_{\|}
\end{array}\right)
$$

