

MODELING TIME-DEPENDENT DIFFUSIVE SHOCK ACCELERATION IN THE TRANSITION REGION

SFB 1491 GENERAL ASSEMBLY -<u>S. AERDKER,</u> L. MERTEN, J. BECKER TJUS

A3 PROJECT: TRANSITION REGION FROM GALACTIC TO EXTRAGALACTIC COSMIC RAYS

ANOMALOUS TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

Credit: IOP

mag

RUHR UNIVERSITÄT BOCHUM

Becker Tjus, Merten, 2020

TRANSITION REGION... FROM GALACTIC TO EXTRA-GALACTIC ORIGIN

Image Credit: NASA, ESA, Hubble

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

Image Credit: NASA

RE-ACCELERATION AT THE GALACTIC WIND TERMINATION SHOCK

- Diffusive Shock Acceleration (DSA) at the Galactic Wind Termination Shock (GWTS)
- CRs accelerated in the Galactic disk propagate outwards and are re-accelerated at the GWTS
- A fraction of re-accelerated CRs is able to propagate back to the Galaxy (Merten et al., 2018)

TRANSITION REGION... FROM BALLISTIC TO DIFFUSIVE PARTICLE TRANSPORT

Cosmic Ray Propagation Framework

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

$$\frac{1}{3}\left(\nabla\cdot\vec{u}\right)\frac{\partial n}{\partial\ln p} + S(\vec{x}, p, t)$$

adiabatic energy change

 $\nabla \cdot \vec{u} \, \mathrm{d}t$

Pseudo-particles are propagated with Stochastic Differential Equations

MODELING DSA WITH STOCHASTIC DIFFERENTIAL EQUATIONS

Interplay between diffusion, advection and adiabatic heating is responsible for energy gain at the shock:

$$\vec{x}_{t+1} = \vec{x}_t + \left[\nabla \cdot \hat{\kappa} + \vec{u}(\vec{x})\right] \Delta t + \sqrt{2\hat{\kappa}}\sqrt{\Delta t}$$

$$p_{t+1} = p_t - \frac{p}{3} \nabla \cdot \vec{u} \,\Delta t$$

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

One-dimensional wind profile with shock at x = 0, compression $q = u_1/u_2 = 4$

CONSTRAINTS

Pseudo-particles have to encounter the diverging advection field to gain energy:

$$\left[\frac{\partial \kappa}{\partial x} + u(x)\right] \Delta t$$
Krülls & Achterberg,
1994

Diffusion must be high enough to cross the shock front multiple times:

•
$$L_{\rm sh} < \sqrt{2\kappa\Delta t}$$

 Shock width must be small compared to advection and diffusion to model infinitely thin shock:

•
$$\epsilon = u_1 L_{\rm sh} / \kappa_1$$
 sufficiently small

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

RUHR RUB UNIVERSITÄT BOCHUM

Achterberg & Schure, 2011

TIME-DEPENDENT DSA... AT 1D PLANAR SHOCK WITH CONSTANT DIFFUSION

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

SDE approach with CRPropa3.2

RUHR

BOCHUM

UNIVERSITÄT

- Integrating transport eq. with VLUGR3
- Shock gets active at $\tilde{t} = 0$

Aerdker, Merten, Becker Tjus, Walter, Effenberger, Fichtner, submitted to JCAP

TIME-DEPENDENT DSA... AT 1D PLANAR SHOCK WITH ENERGY-DEPENDENT DIFFUSION

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

$- \tilde{t} = 160$ $-- \tilde{t} = 200$ 200

 x/x_0 .

- $\kappa = \kappa_0 (E/E_0)^{\alpha}$, $\alpha = 1$
- Acceleration slows down over time
- More particles make it into upstream region

Aerdker, Merten, Becker Tjus, Walter, Effenberger, Fichtner, submitted to JCAP

ACCELERATION TIME SCALE

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

- Mean acceleration time to momentum p depends on:
- energy-dependence α of diffusion coefficient

$$\tau_{\rm acc} = \frac{3}{u_1 - u_2} \left(\frac{\kappa_1}{u_1} + \frac{\kappa_2}{u_2} \right)$$

Aerdker, Merten, Becker Tjus, Walter, Effenberger, Fichtner, submitted to JCAP

TIME-DEPENDENT DSA... AT 1D PLANAR SHOCK WITH SPATIAL-DEPENDENT DIFFUSION

$\kappa/v^2 = \text{const.}$

Student Project, SOWAS, Jurek Völp

TIME-DEPENDENT DSA... AT A SPHERICAL GWTS

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

- $\kappa(E) = 5 \cdot 10^{24} \text{ m}^2/\text{s} (E/E_0)^{\alpha}$
- $E_0 = 10^6 \,\mathrm{GeV}$
- Spectrum & number density at $R_{\rm sh} = 250 \,\rm kpc$

Aerdker, Merten, Becker Tjus, Walter, Effenberger, Fichtner, PoS, ICRC 2023

3D TIME-DEPENDENT DSA...

Aerdker, Merten, Becker Tjus, Walter, Effenberger, Fichtner, PoS, ICRC 2023

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

RUHR UNIVERSITÄT BOCHUM

 $\mathbf{\gamma}$

- Energy gain depends on effective diffusion over the shock front
- Angle between shock front and magnetic field
- Anisotropy of diffusion tensor

$$\hat{\kappa} = \begin{pmatrix} \kappa_{\parallel} \epsilon & 0 & 0 \\ 0 & \kappa_{\parallel} \epsilon & 0 \\ 0 & 0 & \kappa_{\parallel} \end{pmatrix}$$

SUMMARY MODELING TIME DEPENDENT DSA WITH CRPROPA

- DSA modeled with *DiffusionSDE* module of CRPropa3.2
- Time-dependent spectra at the shock
- CandidateSplitting to enhance statistics
- Energy-dependent & spatial-dependent diffusion, anisotropic diffusion
- 3D spherical GWTS & spiral magnetic field
- Acceleration time scale

<u>SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE</u>

OUTLOOK PROPAGATION OUT OF & BACK TO THE GALAXY

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

CANDIDATE SPLITTING TO ENHANCE STATISTICS AT HIGH ENERGIES

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

TIME-DEPENDENT DSA... INJECTING A PRE-ACCELERATED SPECTRUM

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

RUHR UNIVERSITÄT BOCHUM

Aerdker, Merten, Becker Tjus, Walter, Effenberger, Fichtner, JCAP (under review)

DIFFUSION-ADVECTION EQUATION APPROXIMATE STATIONARY STATE WITH CRPROPA

Distribution $f_t(x, t)$ of pseudo-particles at time t

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

RUHR

BOCHUM

UNIVERSITÄT

2. TESTCASE: 1D SUPERDIFFUSION DIFFUSION-ADVECTION AT SHOCK

Effenberger et al. (in preparation)

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

SUPERDIFFUSION STOCHASTIC DIFFERENTIAL EQUATION: LEVY FLIGHTS

$$dx = u(x)dt + \sqrt{2\kappa^{1/2}} dW_t$$

$$W_t$$

$$W$$

- Wiener process $dW_t \propto \eta_W t^{1/2}$ is exchanged by Lévy process $dL_{\alpha} \propto \eta_L t^{1/\alpha}$
- Random numbers η_L are drawn from α -stable Lévy distribution.

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

Sample of 10^7 random numbers drawn from a α -stable Lévy distribution

SUPERDIFFUSION STOCHASTIC DIFFERENTIAL EQUATION: LEVY FLIGHTS

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

MODELING DSA WITH STOCHASTIC DIFFERENTIAL EQUATIONS

• SDE is integrated with Euler-Maruyama Scheme:

$$\vec{x}_{t+1} = \vec{x}_t + \begin{bmatrix} \nabla \cdot \hat{\kappa} + \vec{u}(\vec{x}) \end{bmatrix} \Delta t + \sqrt{2\hat{\kappa}} \sqrt{A}$$
$$\hat{\kappa} = \begin{pmatrix} \kappa_{\parallel} \epsilon & 0 & 0 \\ 0 & \kappa_{\parallel} \epsilon & 0 \\ 0 & 0 & \kappa_{\parallel} \end{pmatrix}$$

SFB1491 GENERAL ASSEMBLY 2023 - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

