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Why SimProp Sirente?

> SimProp is a public code to perform Monte Carlo simulations of ultra-high energy cosmic ray
propagation

> Latest stable version available at https://augerag.sites.Ings.infn.it/SimProp/
> Great legacy in PAO Collaboration frxiv230s.16693]

> Private versions extended to study in-source interactions faiv2200.08503 and large-scale magnetic
fields o

> At least two (public) codes to validate each other (see, e.g., CMS and ATLAS...)

> SimProp-Sirente is the next release, written in modern C++, and designed to take advantage of
most of open-source best practices.

> My full gratitude to CRPropa developers (see our HERMES paper farxiv210s.13165])

Quentin Remy, Andy Strong, Luigi Tibaldo and Silvia Vemetto for useful con-
versations and insights. We further thank the CRPropa development team for
providing a good role model for developing a high-quality C++ astrophysical
code and making it available as free software, aside from the fact that HERMES
borrows CRPropa’s implementation of magnetic ficlds and abstract vector and
grid classes. A.D. acknowledges the P.O.LN.T. Association, KriZevci, Croatia for
providing computational resources needed for testing HERMES. This work was
funded through Grants ASI/INAF No. 2017-14-H.0. D. Gaggero has received
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Why SimProp Sirente?

> Public repository: https://github.com/carmeloevoli/SimProp-Sirente

> Cl: https://github.com/carmeloevoli/SimProp-beta/actions/workflows/ci.yml
> Issue tracking

> TDD: make test

> Modular structure (see later)

> Version tagging

> Documentation: https://simprop.github.io/

> Dependency manage

> Python wrapper (not in first priority)
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Why SimProp Sirente?




UHECR processes and horizons
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What is SimProp-Sirente?

Photon Fields Cross sections
Continuous _Slocha_stlc Output format
losses interactions

Compute
Init Particle Stack :> Build components > Evolve Spectrum :> secondaries :> Save Output

(optional)

> Each module can be easily replaced (e.g., BSM extensions)

> Open and fully tested: https://github.com/carmeloevoli/SimProp-Sirente/
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Photon-fields at z = 0 (local)
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> EBL models implemented are
1. Dominguez et al., 2011, ...
2. Gilmore et al,, 2012, ...
3. Saldana-Lopez et al., 2021, ...
4. For comparison, CMB at z = 0 is a black-body with T" ~ 2.725 K.
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The EBL comoving energy density
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> The EBL comoving photon density, defined as 1~ (€) (1 + 2) 73, is shown at different redshifts according
to the Saldana2012 model.
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The photon integral
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> Arelevant integral, analytical for CMB and pre-computed for each EBL model, is

Iemn) = [ a2

min
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~-rays Optical Depth in Sirente
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The optical depth computed for the Saldana-Lopez EBL model (solid lines). Dotted lines show the absorption due
to CMB photons.
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~-rays Optical Depth in Sirente
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Continuous energy losses

> The equation of motion in redshift for a particle with Lorentz factor [ is given by

1dl’ 1
= > BT, 2) Q)

l"dzil—i—z

n dt
dz

where [3; (1", =) describes each energy loss rate which depends on the photon background and the factor
1/1 + z is accounting for the adiabatic losses due to the Universe expansion.

> The generic loss rate 3; is given by

Bi(T,2) = %/ de'e'Y (Yo a () Iy (¢ /2T) @
th
where
I (emin) :/ df# ®)

and Y is the inelasticity, o 4 is the cross-section on nuclei, ¢ is the photon energy in the interaction
rest-frame, ¢’ is in the the nucleus rest frame (NRF), and 7.+ is the proper photon density.

> The energy-loss length is defined as ¢/ B(T", z)
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Pair-production losses

> Following Chodorowski et al., 1992 ApJ, for pair-production the rate can be obtained as:

2\ acr? me Rl K
(2 = (5 ) 28 ) [ o, (e 1 252 @

' my K
where k = 2F6/m602 and ¢ (k) is a parametrized function given by their Eq.s (3.14) and (3.18).

> The energy threshold for pair-production is

Boen — mz + 2memy mz + 2memy ®)
PEN T T “cos ) 2
following
2 2 e
Feth=m€+ memP:m8<l+ me)Nme_)Lhzz (6)
2myp 2myp Me

> Similar to CRPropa3 here.
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Pair-production losses
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> The energy-loss length A(T", z = 0) for protons due to pair-production at z = 0.

m§+2memp ~ m§+2memp
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> The energy threshold for pair-production is Ey, =
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Pair-production losses on nuclei
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> The energy-loss length A(T", z = 0) for different nuclei due to pair-production, scales roughly with Z
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Pion-production losses

> Pion production can be described either as a continuous loss or stochastic interaction (see later)
> The loss rate B is given by
oo
Br(T) = — de'€'Y (') a(€') Iy (€ /2T) %)
’
€th

where Y is the inelasticity, o 4 is the pion-production cross-section for a nucleus of mass A

> We assume the superposition model thereby

oA =Zop+ (A—Z)on

2
m‘l\'
2myp

& Thethreshold energy is €7, = mx +
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Photo-pion production cross section
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> Photo-pion cross-section for p + « and n + -y as a function of €’ against PDG data on total py
cross-section (elastic part is negligible)

> The relation between s and €' is given by s = m2 + 2Epe(1 — c0s 0) = m2 + 2my€’

> Notice the difference with neutron, well explained in Morejon et al.
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Photo-pion production cross section
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> The superposition model: p + n cross-section against d data

SimProp



Photo-pion production cross section

¢(s)/s* [mb]
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Pre-computed for efficiency purpouses:

o) = [ (s — m2)o(s)ds' ®

Sth
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Pion-production losses
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> the inelasticity is defined as the mean energy fraction lost per interaction

Vo= (g )

> here is simulated with Sophia and fitted with a broken power-law:

_ (x/5)°
Y(x) = Yoo [1 T (Z‘/Ib)5/s]s
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Pion-production losses
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> The energy-loss length ¢/ B(T", z = 0) for protons due to pion-production at z = 0.

) o 242 242
> The energy threshold for pair-production is Ey, = 7’;::1'_70”07;?)17 ~ m"+4T"mp
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Pion-production energy losses
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Figure: Pion-production losses for different species normalized to A.

> Differences due to p-n asymmetry are negligible at this level.
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Photo-pion production

> Photo-pion production can be treated also stochastically.
> The total interaction rate is given by
Rrx =Rx,cme + R eBL ©)
where we consider separately the contribution by CMB and EBL to the total rate.
> In both cases the interaction rate is computed as
c R ’
Rz = Sl /e’ de'€' o a(e") L, (€min)

th

where emin = € /2T
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Pion-production mean free path
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Figure: Pion-production interaction lenghts.
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Photo-pion: sampling the invariant mass energy
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> The generator function for s is:
P(s) x (s*m?,) o(s) — 7ro(smax) = P(s) (10)
with s lies in the range sy = (mp + myz)? and smax = mf, +2(1 — oS Omax) Epe = mg +4Epe
> Where we defined

o) = [ (s — m2)o(s)ds’ )
Sth

Optimization: ¢(s) is pre-tabulated.

> We test here the cases with smax = 4 GeV2 and smayx = 40 GeV?
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Photo-pion: sampling the background photon energy

> We pick € by using the distribution function:
P(e, z) e_zng(e, z)p[smax(€)]

which becomes using comoving photon densities:

P(e,z) x € 2ng (i&) Plsmax(€)]

€max €
r / de' P(e') = / de' P(€)
€ €

min min

> The CDF method implies:

> About €mjp : it is the minimum between e%m and etmhm where is derived by imposing Smax = Stn:
th _ Mz + 2mpma
€min =
4E),
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Photo-pion: sampling the background photon energy
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Photo-pion: sampling the pion energy

> Having generated s we can compute the outgoing pion energy Er (LAB frame):

Ep
Er = ﬁE;(l + Bruz) (16)
where E%, 8%, and i} are the pion energy, velocity and angle of emission in the CMF, respectively
wr = rand[—1,1] 17)
2 2
s—m; +m
Ef = ——f2_ T (18)
2/s
o _ VI = (mx +mp)?[s — (mr —mp)?]
pﬂ' - (1 9)
2y/s

> In Sirente p is extracted from d.P /dt(u)

& Finally, a neutral pion 70 is generated with probability 2/3 and a charged pion % with probability 1/3:

p(n)+'y—>p(n)+7r0+... p=2/3 (20)
pry—n+at .. p=1/3 @1
n+y—=p+m +... (22)
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Photo-pion: sampling the pion energy
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The inelasticity of the 7m-production process is ~13% in the energy range of interest.




Pion-production in AstroPhoMes
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Pion-production in AstroPhoMes
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> Inclusive production cross-section: are they useful for multi-mr production?
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Initial particle distribution function

SimProp provides 3 different builders for the initial particle distribution:
> SingleParticleBuilder, same z and I for all the particles
> SingleSourceBuilder, same z and spectrum oc I' ™%

> SourceEvolutionBuilder, see next slide
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Initial particle distribution function

Assuming as injection source term:
Q(T,2) x T—%e T/Te(1 4 )™
Particle are generated with a distribution written as:

p(T,2) x T @ (1+2)7"

and with a weight

m—+41
w(T,2) = Q/p = Ti=ee T/ LE DT

E(2)
> Generate energies from I'in t0 I'max:
r r "
_ ( max ) (23)
Tmin Lrmin
1> Generate positions from zmin t0 Zmax:
1+2 1+ 2 "
+ _ ( + max) (24)
1+ zmin 1+ Zmin

where 7 is a random variable uniformly distributed € [0, 1[.
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Initial particle distribution function
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Figure: Histograms of N = 108 simulated particle assuming zmin = 0, zmax = 3,m = 2, & = 2.2, and
I'c = oo. In orange the simulated particle distribution, in green after re-weighting.




Continuous evolution in redshift

> We first consider the case without stochastic interactions. Using the formalism before, the evolution
equation can be written:
1dl’ dt
- = (I, 2)— 25
e DLIGE) s)

> integrated in a redshift step Az = 21 — 20:
#1 1dl’ #1 dt
dz—— = — dz (T, 2)— 26
/20 T dz /20 XZ: Bil )dz @9

Y (z)

> The LHS is integrated exactly while the RHS numerically with Simpson’s rule (notice 21 < 2o):

In (%) ~ —% [Y(20) +4Y (20 — Az/2) + Y (20 — Az)] = —6(Az) (27)

> Finally we rewrite the latter as:
't =To [1 — AF(AZ)] (28)
which defines:
AT'(Az) =1 —exp [-6(Az)] (29)

> How to choose A z? We decide a maximum allowed fractional change for I" and we invert

AT. = AT(Az) 30)
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Continuous evolution in redshift
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The algorithm

Basically the propagation algorithm must handle two kind of processes: a stochastic process and the
continuous losses.
The proposed algorithm is similar to GEANT4 and it works as follows:

> Adistance to the next reaction is selected according to an exponential distribution. This is realized by using
a uniformly distributed random number 0 < r < 1 via:

Als = =XsIn(1 =7) (31)
where Ag is obtained as the sum of all the stochastic processes )\;1 => )\;,}

> Another distance is given by imposing a maximum allowed fractional energy loss due to continuous losses:

z0—Az, dinT zo—Azc dt
/ FRCLLEAN SN / 4=, )% = 5 32)
F1 2 dz

0 dz 0

where 3 is given by the sum of all losses and § ~ 10% is the maximal allowed fractional energy loss.

> If Als < Al the particle is propagated over the path length Als. That means that first energy losses
are computed over Al and after that it performs an interaction.

> Otherwise, thatis Als > Al,, the particle is propagated over the distance Al over which continuous
losses are applied without interactions.
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Comparison with the analytical solution
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Performances
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Figure: Particles injected at z = 1. My laptop.
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Main differences with v2r4 so far...

i

1l

1

Implemented new EBL model
Added EBL to ~y-pair production
Improved sampling of incoming photon

Improved ~y-pion production: differentiate proton and neutron cross-section in the
SPM

Improved ~y-pion production: implementing realistic angular distribution for
outgoing pion

A more efficient evolution algorithm
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How to reach the Sirente peak?

O Implement cosmogenic neutrinos
O Test cosmogenic neutrinos against analytical solution
O Implement multi-w production (using AstroPhoMes?)

O Documentation, documentation, documentation. . .
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Thank you!
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