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Why SimProp Sirente?

! SimProp is a public code to perform Monte Carlo simulations of ultra-high energy cosmic ray

propagation

! Latest stable version available at https://augeraq.sites.lngs.infn.it/SimProp/

! Great legacy in PAO Collaboration [arXiv:2305.16693]

! Private versions extended to study in-source interactions [arXiv:2209.08593] and large-scale magnetic

fields []

! At least two (public) codes to validate each other (see, e.g., CMS and ATLAS...)

! SimProp-Sirente is the next release, written in modern C++, and designed to take advantage of

most of open-source best practices.

! My full gratitude to CRPropa developers (see our HERMES paper [arXiv:2105.13165])
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Why SimProp Sirente?

! Public repository: https://github.com/carmeloevoli/SimProp-Sirente

! CI: https://github.com/carmeloevoli/SimProp-beta/actions/workflows/ci.yml

! Issue tracking

! TDD: make test

! Modular structure (see later)

! Version tagging

! Documentation: https://simprop.github.io/

! Dependency manage

! Python wrapper (not in first priority)
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Why SimProp Sirente?
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UHECR processes and horizons
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What is SimProp-Sirente?

Evolve SpectrumInit Particle Stack Build components
Compute  

secondaries 
(optional)

Save Output

Continuous  
losses

Stochastic
interactions Output format

Cross sectionsPhoton Fields

RNG

! Each module can be easily replaced (e.g., BSM extensions)

! Open and fully tested: https://github.com/carmeloevoli/SimProp-Sirente/
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Photon-fields at z = 0 (local)
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! EBL models implemented are

1. Dominguez et al., 2011, ...
2. Gilmore et al., 2012, ...
3. Saldana-Lopez et al., 2021, ...
4. For comparison, CMB at z = 0 is a black-body with T ! 2.725 K.
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The EBL comoving energy density
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! The EBL comoving photon density, defined as nγ(ε)(1 + z)−3 , is shown at different redshifts according
to the Saldana2012 model.
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The photon integral
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! A relevant integral, analytical for CMB and pre-computed for each EBL model, is

Iγ(εmin) =

∫ ∞

εmin

dε
nγ(ε)

ε2
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γ-rays Optical Depth in Sirente
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The optical depth computed for the Saldana-Lopez EBL model (solid lines). Dotted lines show the absorption due
to CMB photons.
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γ-rays Optical Depth in Sirente
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Continuous energy losses

! The equation of motion in redshift for a particle with Lorentz factor Γ is given by

−
1

Γ

dΓ

dz
=

1

1 + z
+

∣∣∣∣
dt

dz

∣∣∣∣
∑

i

βi(Γ, z) (1)

where βi(Γ, z) describes each energy loss rate which depends on the photon background and the factor
1/1 + z is accounting for the adiabatic losses due to the Universe expansion.

! The generic loss rate βi is given by

βi(Γ, z) =
c

2Γ2

∫ ∞

ε′th

dε′ε′Y (ε′)σA(ε′)Iγ(ε
′/2Γ) (2)

where

Iγ(εmin) =

∫

εmin

dε
nγ(ε, z)

ε2
(3)

and Y is the inelasticity, σA is the cross-section on nuclei, ε is the photon energy in the interaction
rest-frame, ε′ is in the the nucleus rest frame (NRF), and nγ is the proper photon density.

! The energy-loss length is defined as c/β(Γ, z)
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Pair-production losses

! Following Chodorowski et al., 1992 ApJ, for pair-production the rate can be obtained as:

βpp(Γ, z) =

(
Z2

A

)
αcr20
Γ

me

mp
(mec

2)

∫ ∞

2
dκnγ [ε(κ), z]

φ(κ)

κ2
(4)

where κ ≡ 2Γε/mec2 and φ(κ) is a parametrized function given by their Eq.s (3.14) and (3.18).

! The energy threshold for pair-production is

Epεth =
m2

e + 2memp

(1− cos θ)
→

m2
e + 2memp

2
(5)

following

Γεth =
m2

e + 2memp

2mp
= me

(
1 +

me

2mp

)
∼ me →

ε′th
me

= 2 (6)

! Similar to CRPropa3 here.
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Pair-production losses
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! The energy-loss length λ(Γ, z = 0) for protons due to pair-production at z = 0.

! The energy threshold for pair-production isEth =
m2

e+2memp

ε(1−cos θ) ! m2
e+2memp

ε
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Pair-production losses on nuclei
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! The energy-loss length λ(Γ, z = 0) for different nuclei due to pair-production, scales roughly withZ

C. Evoli (GSSI) SimProp September 26, 2023 19 / 49



Pion-production losses

! Pion production can be described either as a continuous loss or stochastic interaction (see later)

! The loss rate βπ is given by

βπ(Γ) =
c

2Γ2

∫ ∞

ε′th

dε′ε′Y (ε′)σA(ε′)Iγ(ε
′/2Γ) (7)

where Y is the inelasticity, σA is the pion-production cross-section for a nucleus of massA

! We assume the superposition model thereby

σA = Zσp + (A− Z)σn

! The threshold energy is ε′th = mπ +
m2

π
2mp
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Photo-pion production cross section

0.1 1 10 102

e0 [GeV]

0.0

0.1

0.2

0.3

0.4

0.5

0.6
s

[m
b]

(p,g)
(n,g)

mp + m2
p

2mp

PDG

! Photo-pion cross-section for p+ γ and n+ γ as a function of ε′ against PDG data on total pγ
cross-section (elastic part is negligible)

! The relation between s and ε′ is given by s = m2
p + 2Epε(1− cos θ) = m2

p + 2mpε′

! Notice the difference with neutron, well explained in Morejon et al.
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Photo-pion production cross section
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! The superposition model: p + n cross-section against d data
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Photo-pion production cross section
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Pre-computed for efficiency purpouses:

φ(s) =

∫ s

sth

(s′ −m2
p)σ(s

′)ds′ (8)
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Pion-production losses
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! here is simulated with Sophia and fitted with a broken power-law:

Y (x) = Y∞
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δ
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Pion-production losses
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! The energy-loss length c/β(Γ, z = 0) for protons due to pion-production at z = 0.

! The energy threshold for pair-production isEth =
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Pion-production energy losses
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Figure: Pion-production losses for different species normalized toA.

! Differences due to p-n asymmetry are negligible at this level.
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Photo-pion production

! Photo-pion production can be treated also stochastically.

! The total interaction rate is given by

Rπ = Rπ,CMB +Rπ,EBL (9)

where we consider separately the contribution by CMB and EBL to the total rate.

! In both cases the interaction rate is computed as

Rπ,i =
c

2Γ2

∫ ∞

ε′th

dε′ε′σA(ε′)Iγ,i(εmin)

where εmin = ε′/2Γ
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Pion-production mean free path
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Figure: Pion-production interaction lenghts.
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Photo-pion: sampling the invariant mass energy
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! The generator function for s is:

P (s) ∝ (s−m2
p) σ(s) −→ rφ(smax) = φ(s) (10)

with s lies in the range sth = (mp+mπ)2 and smax = m2
p+2(1−cos θmax)Epε = m2

p+4Epε

! Where we defined

φ(s) =

∫ s

sth

(s′ −m2
p)σ(s

′)ds′ (11)

Optimization: φ(s) is pre-tabulated.

! We test here the cases with smax = 4 GeV2 and smax = 40 GeV2
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Photo-pion: sampling the background photon energy

! We pick ε by using the distribution function:

P (ε, z) ∝ ε−2np
γ(ε, z)φ[smax(ε)] (12)

which becomes using comoving photon densities:

P (ε, z) ∝ ε−2nc
γ

(
ε

1 + z
, z

)
φ[smax(ε)] (13)

! The CDF method implies:

r

∫ εmax

εmin

dε′P (ε′) =

∫ ε

εmin

dε′P (ε′) (14)

! About εmin : it is the minimum between εγmin and εthmin where is derived by imposing smax = sth:

εthmin =
m2

π + 2mpmπ

4Ep
(15)
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Photo-pion: sampling the background photon energy
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Photo-pion: sampling the pion energy

! Having generated s we can compute the outgoing pion energyEπ (LAB frame):

Eπ =
Ep√
s
E∗

π(1 + β∗
πµ

∗
π) (16)

whereE∗
π , β

∗
π , and µ

∗
π are the pion energy, velocity and angle of emission in the CMF, respectively

µ∗
π = rand[−1, 1] (17)

E∗
π =

s−m2
p +m2

π

2
√
s

(18)

p∗π =

√
[s− (mπ +mp)2][s− (mπ −mp)2]

2
√
s

(19)

! In Sirente µ∗
π is extracted from dP/dt(µ)

! Finally, a neutral pion π0 is generated with probability 2/3 and a charged pion π± with probability 1/3:

p(n) + γ → p(n) + π0 + . . . p = 2/3 (20)

p+ γ → n+ π+ + . . . p = 1/3 (21)

n+ γ → p+ π− + . . . (22)
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Photo-pion: sampling the pion energy
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The inelasticity of the π-production process is∼13% in the energy range of interest.
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Pion-production in AstroPhoMes
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Pion-production in AstroPhoMes
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! Inclusive production cross-section: are they useful for multi-π production?
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Initial particle distribution function

SimProp provides 3 different builders for the initial particle distribution:

! SingleParticleBuilder, same z and Γ for all the particles

! SingleSourceBuilder, same z and spectrum∝ Γ−α

! SourceEvolutionBuilder, see next slide

C. Evoli (GSSI) SimProp September 26, 2023 38 / 49



Initial particle distribution function

Assuming as injection source term:

Q(Γ, z) ∝ Γ−αe−Γ/Γc (1 + z)m

Particle are generated with a distribution written as:

p(Γ, z) ∝ Γ−1 ⊗ (1 + z)−1

and with a weight

w(Γ, z) = Q/p = Γ1−αe−Γ/Γc
(1 + z)m+1

E(z)

! Generate energies from Γmin to Γmax:

Γ

Γmin
=

(
Γmax

Γmin

)r

(23)

! Generate positions from zmin to zmax:

1 + z

1 + zmin
=

(
1 + zmax

1 + zmin

)r

(24)

where r is a random variable uniformly distributed∈ [0, 1[.
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Initial particle distribution function

0.0 0.5 1.0 1.5 2.0 2.5 3.0
z

0.0

0.2

0.4

0.6

0.8

PD
F

N = 106

µ (1 + z)°1

µ (1 + z)2/E(z)

8 9 10 11 12 13
log G

10°6

10°4

10°2

1

dN
/d

lo
gG

N = 106

µ E°1.2

Figure: Histograms ofN = 106 simulated particle assuming zmin = 0, zmax = 3,m = 2, α = 2.2, and
Γc = ∞. In orange the simulated particle distribution, in green after re-weighting.
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Continuous evolution in redshift

! We first consider the case without stochastic interactions. Using the formalism before, the evolution
equation can be written:

1

Γ

dΓ

dz
= −

∑

i

βi(Γ, z)
dt

dz
(25)

! integrated in a redshift step∆z = z1 − z0 :
∫ z1

z0

dz
1

Γ

dΓ

dz
= −

∫ z1

z0

dz
∑

i

βi(Γ, z)
dt

dz
︸ ︷︷ ︸

Y (z)

(26)

! The LHS is integrated exactly while the RHS numerically with Simpson’s rule (notice z1 < z0):

ln
(
Γ1

Γ0

)
! −

∆z

6
[Y (z0) + 4Y (z0 −∆z/2) + Y (z0 −∆z)] ≡ −δ(∆z) (27)

! Finally we rewrite the latter as:
Γ1 = Γ0 [1−∆Γ(∆z)] (28)

which defines:
∆Γ(∆z) ≡ 1− exp [−δ(∆z)] (29)

! How to choose∆z? We decide a maximum allowed fractional change for Γ and we invert

∆Γc = ∆Γ(∆z) (30)
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Continuous evolution in redshift
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The algorithm

Basically the propagation algorithm must handle two kind of processes: a stochastic process and the
continuous losses.
The proposed algorithm is similar to GEANT4 and it works as follows:

! A distance to the next reaction is selected according to an exponential distribution. This is realized by using
a uniformly distributed random number 0 < r < 1 via:

∆ls = −λs ln(1− r) (31)

where λs is obtained as the sum of all the stochastic processes λ−1
s =

∑
i λ

−1
s,i .

! Another distance is given by imposing a maximum allowed fractional energy loss due to continuous losses:
∫ z0−∆zc

z0

dz
d lnΓ
dz

= δ −→
∫ z0−∆zc

z0

dzβ(Γ, z)
dt

dz
= δ (32)

where β is given by the sum of all losses and δ ! 10% is the maximal allowed fractional energy loss.

! If∆ls ≤ ∆lc the particle is propagated over the path length∆ls . That means that first energy losses
are computed over∆ls and after that it performs an interaction.

! Otherwise, that is∆ls > ∆lc , the particle is propagated over the distance∆lc over which continuous
losses are applied without interactions.
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Comparison with the analytical solution
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Figure: .
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Performances
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Figure: Particles injected at z = 1. My laptop.
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Main differences with v2r4 so far...

 Implemented new EBL model

 Added EBL to γ-pair production

 Improved sampling of incoming photon

 Improved γ-pion production: differentiate proton and neutron cross-section in the

SPM

 Improved γ-pion production: implementing realistic angular distribution for

outgoing pion

 A more efficient evolution algorithm
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How to reach the Sirente peak?

 Implement cosmogenic neutrinos

 Test cosmogenic neutrinos against analytical solution

 Implement multi-π production (using AstroPhoMes?)

 Documentation, documentation, documentation. . .
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Thank you!

Carmelo Evoli

 GRAN SASSO SCIENCE INSTITUTE
 Via Michele Iacobucci, 2, L’Aquila (Italy)
 mailto: carmelo.evoli@gssi.it
 @carmeloevoli
 carmeloevoli
 e.carmelo

0000-0002-6023-5253
 slides available at:

https://zenodo.org/communities/carmeloevoli_talks
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