First steps towards SimProp-Sirente

Carmelo Evoli

Gran Sasso Science Institute, L'Aquila (Italy) INFN/Laboratori Nazionali del Gran Sasso (LNGS), Assergi (Italy)

September 26, 2023

◆□▶ ◆舂▶ ◆注▶ ◆注▶ ─ 注

Outline

SimProp project

Photon-fields

Continuous energy losses

Stochastic energy losses

Building initial state

Evolutors

Conclusions

イロト イロト イヨト イヨト

DQC

Why SimProp Sirente?

- SimProp is a public code to perform Monte Carlo simulations of ultra-high energy cosmic ray propagation
- Latest stable version available at https://augeraq.sites.lngs.infn.it/SimProp/
- Great legacy in PAO Collaboration [arXiv:2305.16693]
- Private versions extended to study in-source interactions [arXiv:2209.08593] and large-scale magnetic fields I
- ▶ At least two (public) codes to validate each other (see, e.g., CMS and ATLAS...)
- SimProp-Sirente is the next release, written in modern C++, and designed to take advantage of most of open-source best practices.
- ▶ My full gratitude to CRPropa developers (see our HERMES paper [arXiv:2105.13165])

Quentin Remy, Andy Strong, Luigi Thado and Silvia Vernetto for useful conversations and insights. We further humb the CBP2ropa development team for providing a good role model for developing a high-paulity C++ astrophysical code and making it available as free softwares, aside from the farth HERERE borrows CBP7opa's implementation of magnetic fields and abstract vector and argift classes. A D acknowledges the POL 10.1 X Association, Ničević, Cruatio for providing comparational resources needed for testing IERERES. This work was funded through Grants AS(IINAF No. 2017-14H).O. D. Gagero has received

イロト イポト イヨト イヨト

Why SimProp Sirente?

- ▷ Public repository: https://github.com/carmeloevoli/SimProp-Sirente
- CI: https://github.com/carmeloevoli/SimProp-beta/actions/workflows/ci.yml
- Issue tracking
- TDD: make test
- Modular structure (see later)
- Version tagging
- Documentation: https://simprop.github.io/
- Dependency manage
- Python wrapper (not in first priority)

Why SimProp Sirente?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ ���?

UHECR processes and horizons

What is SimProp-Sirente?

- Each module can be easily replaced (e.g., BSM extensions)
- Open and fully tested: https://github.com/carmeloevoli/SimProp-Sirente/

9QC

イロト イロト イヨト イヨト

Photon-fields at z = 0 (local)

- ▷ EBL models implemented are
 - 1. Dominguez et al., 2011, ...
 - 2. Gilmore et al., 2012, ...
 - 3. Saldana-Lopez et al., 2021, ...
 - 4. For comparison, CMB at z=0 is a black-body with $T\simeq 2.725$ K _

C. Evoli (GSSI

The EBL comoving energy density

▷ The EBL comoving photon density, defined as $n_{\gamma}(\epsilon)(1+z)^{-3}$, is shown at different redshifts according to the Saldana2012 model.

< □ > < @ > < 差 >

The photon integral

> A relevant integral, analytical for CMB and pre-computed for each EBL model, is

$$I_{\gamma}(\epsilon_{\min}) = \int_{\epsilon_{\min}}^{\infty} d\epsilon \frac{n_{\gamma}(\epsilon)}{\epsilon^{2}}$$

• • • • • • • • •

$\gamma\text{-rays}$ Optical Depth in Sirente

The optical depth computed for the Saldana-Lopez EBL model (solid lines). Dotted lines show the absorption due to CMB photons.

	4	1 - 10	1	= r	1 4 4	-	*) 4	0
C. Evoli (GSSI)					Septembe	r 26, 2023		49

$\gamma\text{-rays}$ Optical Depth in Sirente

Continuous energy losses

> The equation of motion in redshift for a particle with Lorentz factor Γ is given by

$$-\frac{1}{\Gamma}\frac{d\Gamma}{dz} = \frac{1}{1+z} + \left|\frac{dt}{dz}\right| \sum_{i} \beta_{i}(\Gamma, z)$$
(1)

where $\beta_i(\Gamma, z)$ describes each energy loss rate which depends on the photon background and the factor 1/1 + z is accounting for the adiabatic losses due to the Universe expansion.

 \triangleright The generic loss rate β_i is given by

$$\beta_i(\Gamma, z) = \frac{c}{2\Gamma^2} \int_{\epsilon'_{\text{th}}}^{\infty} d\epsilon' \epsilon' Y(\epsilon') \sigma_A(\epsilon') I_{\gamma}(\epsilon'/2\Gamma)$$
(2)

where

$$I_{\gamma}(\epsilon_{\min}) = \int_{\epsilon_{\min}} d\epsilon \frac{n_{\gamma}(\epsilon, z)}{\epsilon^2}$$
(3)

and Y is the inelasticity, σ_A is the cross-section on nuclei, ϵ is the photon energy in the interaction rest-frame, ϵ' is in the the nucleus rest frame (NRF), and n_{γ} is the proper photon density.

 \triangleright The energy-loss length is defined as $c/eta(\Gamma,z)$

<ロト < 回 > < 回 > < 回 > < 回 >

Pair-production losses

▷ Following Chodorowski et al., 1992 ApJ, for pair-production the rate can be obtained as:

$$\beta_{pp}(\Gamma, z) = \left(\frac{Z^2}{A}\right) \frac{\alpha c r_0^2}{\Gamma} \frac{m_e}{m_p} (m_e c^2) \int_2^\infty d\kappa \, n_\gamma \left[\epsilon(\kappa), z\right] \frac{\phi(\kappa)}{\kappa^2} \tag{4}$$

where $\kappa\equiv 2\Gamma\epsilon/m_ec^2$ and $\phi(\kappa)$ is a parametrized function given by their Eq.s (3.14) and (3.18).

> The energy threshold for pair-production is

$$E_p \epsilon_{\text{th}} = \frac{m_e^2 + 2m_e m_p}{(1 - \cos \theta)} \to \frac{m_e^2 + 2m_e m_p}{2} \tag{5}$$

following

$$\Gamma \epsilon_{\rm th} = \frac{m_e^2 + 2m_e m_p}{2m_p} = m_e \left(1 + \frac{m_e}{2m_p} \right) \sim m_e \to \frac{\epsilon_{\rm th}'}{m_e} = 2 \tag{6}$$

Similar to CRPropa3 here.

イロト イロト イヨト イヨト

 \triangleright The energy-loss length $\lambda(\Gamma, z = 0)$ for protons due to pair-production at z = 0.

 $\triangleright~$ The energy threshold for pair-production is $E_{\rm th}=\frac{m_e^2+2m_em_p}{\epsilon(1-\cos\theta)}\simeq\frac{m_e^2+2m_em_p}{\epsilon}$

< • > < • > <

Pair-production losses on nuclei

 \triangleright The energy-loss length $\lambda(\Gamma, z = 0)$ for different nuclei due to pair-production, scales roughly with Z

< • • • • •

Pion-production losses

- ▷ Pion production can be described either as a continuous loss or stochastic interaction (see later)
- ▷ The loss rate β_{π} is given by

$$\beta_{\pi}(\Gamma) = \frac{c}{2\Gamma^2} \int_{\epsilon'_{\text{th}}}^{\infty} d\epsilon' \epsilon' Y(\epsilon') \sigma_A(\epsilon') I_{\gamma}(\epsilon'/2\Gamma)$$
(7)

where Y is the inelasticity, σ_A is the pion-production cross-section for a nucleus of mass A

We assume the superposition model thereby

$$\sigma_A = Z\sigma_p + (A - Z)\sigma_n$$

 \triangleright The threshold energy is $\epsilon'_{
m th}=m_{\pi}+rac{m_{\pi}^2}{2m_p}$

< ロ ト < 同 ト < 三 ト < 三 ト

Photo-pion production cross section

- Photo-pion cross-section for p + γ and n + γ as a function of ε' against PDG data on total pγ cross-section (elastic part is negligible)
- $\triangleright~$ The relation between s and ϵ' is given by $s=m_p^2+2E_p\epsilon(1-\cos\theta)=m_p^2+2m_p\epsilon'$
- ▷ Notice the difference with neutron, well explained in Morejon et al.

Photo-pion production cross section

▷ The superposition model: p + n cross-section against d data

Photo-pion production cross section

Pre-computed for efficiency purpouses:

$$\phi(s) = \int_{s_{\text{th}}}^{s} (s' - m_p^2)\sigma(s')ds' \tag{8}$$

・ロト ・ 日 ト ・ ヨト

Pion-production losses

▷ the inelasticity is defined as the mean energy fraction lost per interaction

$$Y(\epsilon') = \left\langle \frac{E_{\rm in} - E_{\rm out}}{E_{\rm in}} \right\rangle$$

▷ here is simulated with Sophia and fitted with a broken power-law:

$$Y(x) = Y_{\infty} \frac{(x/x_{\mathsf{b}})^{\delta}}{\left[1 + (x/x_{\mathsf{b}})^{\delta/s}\right]^{s}}$$

• • • • • • • • •

▷ The energy-loss length $c/\beta(\Gamma, z = 0)$ for protons due to pion-production at z = 0.

 \triangleright The energy threshold for pair-production is $E_{\rm th}=\frac{m_\pi^2+2m_\pi m_p}{2\epsilon(1-\cos\theta)}\simeq\frac{m_\pi^2+2m_\pi m_p}{4\epsilon}$

• • • • • • • •

Pion-production energy losses

Figure: Pion-production losses for different species normalized to A.

[▷] Differences due to p-n asymmetry are negligible at this level.

- Photo-pion production can be treated also stochastically.
- The total interaction rate is given by

$$\mathcal{R}_{\pi} = \mathcal{R}_{\pi, \mathsf{CMB}} + \mathcal{R}_{\pi, \mathsf{EBL}} \tag{9}$$

where we consider separately the contribution by CMB and EBL to the total rate.

In both cases the interaction rate is computed as

$$\mathcal{R}_{\pi,i} = \frac{c}{2\Gamma^2} \int_{\epsilon_{\rm th}'}^{\infty} d\epsilon' \epsilon' \sigma_A(\epsilon') I_{\gamma,i}(\epsilon_{\rm min})$$

where $\epsilon_{\rm min}=\epsilon'/2\Gamma$

イロト イロト イヨト イヨト

Pion-production mean free path

Figure: Pion-production interaction lenghts.

э

(日)

Photo-pion: sampling the invariant mass energy

▷ The generator function for s is:

$$P(s) \propto (s - m_p^2) \sigma(s) \longrightarrow r\phi(s_{\max}) = \phi(s)$$
 (10)

with s lies in the range $s_{\text{th}} = (m_p + m_\pi)^2$ and $s_{\text{max}} = m_p^2 + 2(1 - \cos \theta_{\text{max}})E_p\epsilon = m_p^2 + 4E_p\epsilon$ \triangleright Where we defined

$$\phi(s) = \int_{s_{\rm th}}^{s} (s' - m_p^2) \sigma(s') ds' \tag{11}$$

Optimization: $\phi(s)$ is pre-tabulated.

 $\triangleright~$ We test here the cases with $s_{\rm max}=4~{\rm GeV}^2$ and $s_{\rm max}=40~{\rm GeV}^2$

Photo-pion: sampling the background photon energy

 \triangleright We pick ϵ by using the distribution function:

$$P(\epsilon, z) \propto \epsilon^{-2} n_{\gamma}^{p}(\epsilon, z) \phi[s_{\max}(\epsilon)]$$
(12)

which becomes using comoving photon densities:

$$P(\epsilon, z) \propto \epsilon^{-2} n_{\gamma}^{c} \left(\frac{\epsilon}{1+z}, z\right) \phi[s_{\max}(\epsilon)]$$
 (13)

The CDF method implies:

$$r \int_{\epsilon_{\min}}^{\epsilon_{\max}} d\epsilon' P(\epsilon') = \int_{\epsilon_{\min}}^{\epsilon} d\epsilon' P(\epsilon')$$
(14)

 \triangleright About ϵ_{\min} : it is the minimum between ϵ_{\min}^{γ} and $\epsilon_{\min}^{\text{th}}$ where is derived by imposing $s_{\max} = s_{\th}$:

$$\epsilon_{\min}^{\text{th}} = \frac{m_\pi^2 + 2m_p m_\pi}{4E_p} \tag{15}$$

イロト イロト イヨト イヨト

Photo-pion: sampling the background photon energy

Photo-pion: sampling the pion energy

 $\triangleright~$ Having generated s we can compute the outgoing pion energy E_π (LAB frame):

$$E_{\pi} = \frac{E_p}{\sqrt{s}} E_{\pi}^* (1 + \beta_{\pi}^* \mu_{\pi}^*) \tag{16}$$

where E^*_{π}, β^*_{π} , and μ^*_{π} are the pion energy, velocity and angle of emission in the CMF, respectively

$$\mu_{\pi}^* = \operatorname{rand}[-1, 1] \tag{17}$$

$$E_{\pi}^{*} = \frac{s - m_{p}^{2} + m_{\pi}^{2}}{2\sqrt{s}}$$
(18)

$$p_{\pi}^{*} = \frac{\sqrt{[s - (m_{\pi} + m_{p})^{2}][s - (m_{\pi} - m_{p})^{2}]}}{2\sqrt{s}}$$
(19)

 $\,\triangleright\,\,$ In Sirente μ_π^* is extracted from $dP/dt(\mu)$

 \triangleright Finally, a neutral pion π^0 is generated with probability 2/3 and a charged pion π^{\pm} with probability 1/3:

$$p(n) + \gamma \to p(n) + \pi^0 + \dots$$
 $p = 2/3$ (20)

$$p + \gamma \to n + \pi^+ + \dots$$
 $p = 1/3$ (21)

$$n + \gamma \to p + \pi^- + \dots \tag{22}$$

イロト イロト イヨト イヨト

Photo-pion: sampling the pion energy

The inelasticity of the π -production process is \sim 13% in the energy range of interest.

• • • • • • • • •

Pion-production in AstroPhoMes

・ロト ・ 日 ト ・ ヨト

Pion-production in AstroPhoMes

 \triangleright Inclusive production cross-section: are they useful for multi- π production?

・ロト ・回ト ・目ト

SimProp provides 3 different builders for the initial particle distribution:

- \triangleright SingleParticleBuilder, same z and Γ for all the particles
- $\triangleright~{
 m SingleSourceBuilder}$, same z and spectrum $\propto \Gamma^{-lpha}$
- SourceEvolutionBuilder, see next slide

Initial particle distribution function

Assuming as injection source term:

$$Q(\Gamma,z) \propto \Gamma^{-\alpha} \mathrm{e}^{-\Gamma/\Gamma_c} (1+z)^m$$

Particle are generated with a distribution written as:

$$p(\Gamma, z) \propto \Gamma^{-1} \otimes (1+z)^{-1}$$

and with a weight

$$w(\Gamma, z) = Q/p = \Gamma^{1-\alpha} e^{-\Gamma/\Gamma_c} \frac{(1+z)^{m+1}}{E(z)}$$

 $\triangleright~$ Generate energies from Γ_{min} to Γ_{max} :

$$\frac{\Gamma}{\Gamma_{\min}} = \left(\frac{\Gamma_{\max}}{\Gamma_{\min}}\right)^{r}$$
(23)

Generate positions from z_{min} to z_{max}:

$$\frac{1+z}{1+z_{\min}} = \left(\frac{1+z_{\max}}{1+z_{\min}}\right)^r \tag{24}$$

• • • • • • • • • • • •

where r is a random variable uniformly distributed $\in [0, 1[$.

Initial particle distribution function

Figure: Histograms of $N=10^6$ simulated particle assuming $z_{min}=0$, $z_{max}=3$, m=2, $\alpha=2.2$, and $\Gamma_c=\infty$. In orange the simulated particle distribution, in green after re-weighting.

< □ > < 🗗 > < 🖻

Continuous evolution in redshift

We first consider the case without stochastic interactions. Using the formalism before, the evolution equation can be written:

$$\frac{1}{\Gamma}\frac{d\Gamma}{dz} = -\sum_{i}\beta_{i}(\Gamma, z)\frac{dt}{dz}$$
(25)

 \triangleright integrated in a redshift step $\Delta z = z_1 - z_0$:

$$\int_{z_0}^{z_1} dz \frac{1}{\Gamma} \frac{d\Gamma}{dz} = -\int_{z_0}^{z_1} dz \underbrace{\sum_i \beta_i(\Gamma, z) \frac{dt}{dz}}_{Y(z)}$$
(26)

 \triangleright The LHS is integrated exactly while the RHS numerically with Simpson's rule (notice $z_1 < z_0$):

$$\ln\left(\frac{\Gamma_1}{\Gamma_0}\right) \simeq -\frac{\Delta z}{6} \left[Y(z_0) + 4Y(z_0 - \Delta z/2) + Y(z_0 - \Delta z)\right] \equiv -\delta(\Delta z) \tag{27}$$

Finally we rewrite the latter as:

$$\Gamma_1 = \Gamma_0 \left[1 - \Delta \Gamma(\Delta z) \right] \tag{28}$$

which defines:

$$\Delta\Gamma(\Delta z) \equiv 1 - \exp\left[-\delta(\Delta z)\right] \tag{29}$$

 \triangleright How to choose Δz ? We decide a maximum allowed fractional change for Γ and we invert

$$\Delta\Gamma_c = \Delta\Gamma(\Delta z) \tag{30}$$

<ロト < 回 > < 回 > < 回 > < 回 >

Continuous evolution in redshift

・ロト ・回ト ・目ト

The algorithm

Basically the propagation algorithm must handle two kind of processes: a stochastic process and the continuous losses.

The proposed algorithm is similar to GEANT4 and it works as follows:

A distance to the next reaction is selected according to an exponential distribution. This is realized by using a uniformly distributed random number 0 < r < 1 via:

$$\Delta l_s = -\lambda_s \ln(1-r) \tag{31}$$

where λ_s is obtained as the sum of all the stochastic processes $\lambda_s^{-1} = \sum_i \lambda_{s,i}^{-1}$.

▷ Another distance is given by imposing a maximum allowed fractional energy loss due to continuous losses:

$$\int_{z_0}^{z_0 - \Delta z_c} dz \frac{d\ln \Gamma}{dz} = \delta \longrightarrow \int_{z_0}^{z_0 - \Delta z_c} dz \beta(\Gamma, z) \frac{dt}{dz} = \delta$$
(32)

where eta is given by the sum of all losses and $\delta\simeq 10\%$ is the maximal allowed fractional energy loss.

- ▷ If $\Delta l_s \leq \Delta l_c$ the particle is propagated over the path length Δl_s . That means that first energy losses are computed over Δl_s and after that it performs an interaction.
- > Otherwise, that is $\Delta l_s > \Delta l_c$, the particle is propagated over the distance Δl_c over which continuous losses are applied without interactions.

・ロト ・ 一下・ ・ ヨト・ モート・

Comparison with the analytical solution

Figure: .

Image: A mathematical states of the state

Performances

Figure: Particles injected at z = 1. My laptop.

・ロト ・ 日 ト ・ ヨト

Table of Contents

SimProp project

Photon-fields

Continuous energy losses

Stochastic energy losses

Building initial state

Evolutors

Conclusions

イロト イロト イヨト イヨト

Main differences with v2r4 so far...

- ⇄ Implemented new EBL model
- \rightleftharpoons Added EBL to γ -pair production
- ➡ Improved sampling of incoming photon
- ➡ Improved γ-pion production: differentiate proton and neutron cross-section in the SPM
- Improved γ-pion production: implementing realistic angular distribution for outgoing pion
- ⇄ A more efficient evolution algorithm

How to reach the Sirente peak?

- Implement cosmogenic neutrinos
- Test cosmogenic neutrinos against analytical solution
- \Box Implement multi- π production (using AstroPhoMes?)
- Documentation, documentation, documentation. . .

• • • • • • • • •

Thank you!

Carmelo Evoli

- ☆ GRAN SASSO SCIENCE INSTITUTE
- ✓ Via Michele Iacobucci, 2, L'Aquila (Italy)
- 🖋 mailto: carmelo.evoli@gssi.it
- 9 @carmeloevoli
- carmeloevoli
- s e.carmelo
- 0000-0002-6023-5253
- ▲ slides available at:

https://zenodo.org/communities/carmeloevoli_talks

< □ ▶ < @ ▶ < 글 ▶ < 글 ▶