

Investigating Charged Particle Transport in Non-Gaussian Magnetic Turbulence Models *CRPropa Workshop, September 2023*

Frederic Effenberger, Jeremiah Lübke, Horst Fichtner, Rainer Grauer *Ruhr-University Bochum, Germany*

Overview

- Introduction
- Energetic particle transport
- Synthetic turbulence modelling
- Particles in turbulence
- Summary

The Heliosphere & ISM

Particle Transport in the Heliosphere

Particle trajectory

How do particles travel from Sun to Earth?

ISSI Team Jeffrey & Effenberger

A Primer on Focused Solar Energetic Particle Transport Basic physics and recent modelling results

Jabus van den Berg $\,\cdot\,$ Du Toit Strauss $\,\cdot\,$ Frederic Effenberger

1D Solar Energetic Particle Modelling

RUB

Basic 1D focused transport equation

$$\frac{\partial f}{\partial t} + \frac{\partial}{\partial s} \left[\mu v f\right] + \frac{\partial}{\partial \mu} \left[\frac{(1 - \mu^2)v}{2L(s)} f \right] = \frac{\partial}{\partial \mu} \left[D_{\mu\mu} \frac{\partial f}{\partial \mu} \right]$$

$$D_{\mu\mu}^{\text{QLT}}(\mu) = D_0(1-\mu^2)|\mu|^{q-1}$$

If S and M represents the stochastic variables corresponding to s and μ , respectively, then the two first order SDEs equivalent to the Roelof equation (Eq. 9) are

$$dS = \mu v dt$$
$$dM = \left[\frac{(1-\mu^2)v}{2L(s)} + \frac{\partial D_{\mu\mu}}{\partial \mu}\right] dt + \sqrt{2D_{\mu\mu}} dW_{\mu}(t),$$

where $dW_{\mu}(t)$ is a Wiener process. These SDEs are solved using the Euler-Maruyama scheme,

$$S(t + \Delta t) = S(t) + M(t)v\Delta t$$
$$M(t + \Delta t) = M(t) + \left[\frac{(1 - M^2(t))v}{2L(S(t))} + \frac{\partial D_{\mu\mu}}{\partial \mu}\Big|_{\mu = M(t)}\right] \Delta t + \sqrt{2D_{\mu\mu}(M(t))\Delta t}\Lambda,$$

Anomalous Diffusion

Anomalous Diffusion

Anomalous
$$(\Delta x)^2 \propto t^6$$

 $\begin{array}{ll} \mbox{Superdiffusion:} & 1 < \zeta < 2 \\ \mbox{Subdiffusion:} & 0 < \zeta < 1 \end{array}$

Idea: Generalize Diffusion Equation to non-integer derivatives

$$\frac{\partial f}{\partial t} = \kappa \frac{\partial^{\alpha} f}{\partial |x|^{\alpha}} + a \frac{\partial f}{\partial x} + \delta(x)$$

Using symmetric fractional Riesz derivative (generalized Laplacian)

$$\frac{\partial^{\alpha} f(x,t)}{\partial |x|^{\alpha}} = \frac{1}{\pi} \sin\left(\frac{\pi}{2}\alpha\right) \Gamma(1+\alpha)$$
$$\times \int_{0}^{\infty} \frac{f(x+\xi) - 2f(x) + f(x-\xi)}{\xi^{1+\alpha}} d\xi$$

The Complexity of Physics Based CR/SEP Models

Figure by RDT Strauss

Towards SEP nowcasting

Example of multiple injections (100 keV Electrons)

Observations of Intermittency in the SW

Turbulence such as in the Solar Wind or Interstellar Medium is highly **intermittent**

Important 2-point statistics: Increments $\delta B_{\tau} = B(t+\tau) - B(t)$, Structure functions $\langle \delta B_{\tau}^{q} \rangle \propto \tau^{\zeta_{q}}$

[J. Lübke]

(Hydro) Intermittency Models

7 8 9

6

(*i.*) Kolmogorov's theory K41:

 $\langle (\delta_r v)^n \rangle \sim |r|^{\zeta_n}$

The monofractal K41 phenomenology [3] states that $\langle (\delta_r v)^n \rangle = C_n \langle \varepsilon \rangle^{n/3} r^{n/3}$ and an evaluation of the reduced Kramers–Moyal coefficients (17) suggests that it can be reproduced by just a single Kramers–Moyal coefficient

$$K_n = \begin{cases} 1/3 & \text{for } n \le 1, \\ 0 & \text{for } n > 1. \end{cases}$$
(19)

(*ii*.) Oboukhov–Kolmogorov theory OK62:

$$\langle (\delta_r v)^n \rangle = C_n \langle \varepsilon \rangle^{\frac{n}{3}} r^{\frac{n}{3}} \left(\frac{r}{L} \right)^{-\frac{n(n-3)\mu}{18}}$$

Observations of Intermittency in the SW

[Telloni et al. 2021]

Figure 5. Trace of the magnetic spectral matrix δB^2 (top left), magnetic compressibility spectrum *C* (top right), and flatness \mathcal{F} as a function of the spacecraft frequency (bottom left) for PSP (red) and SolO (blue) radially aligned intervals. Power-law fits are displayed as thick lines, while relative scaling exponents are reported in the legends. Bottom right: comparison of the scaling exponents ξ_q of the *q*th-order structure functions for PSP (red) and SolO (blue) magnetic field RTN components and magnitude (represented by different symbols as reported in the legend). As a comparison, exponents for velocity fluctuations in the inertial range of hydrodynamic turbulence (green stars; Benzi et al. 1993) and the classical K41 (*q*/3) Kolmogorov law (dotted line; Kolmogorov 1941) are also displayed.

Full-Orbit Simulation

RUB

Solving the Newton-Lorentz Equations for many charged (Test) Particles

Dimensionless Time: $T = \Omega t$

Dimensionless Rigidity: $\mathbf{R} := \mathbf{v}/(\Omega \ell)$

With gyro frequency Ω and typical length scale (bendover scale) ℓ

In the literature, often RK methods are used. We use the Boris Push method for energy conservation:

$$\frac{d}{dT}\mathbf{R} = \mathbf{R} \times \left(\mathbf{e}_z + \frac{\delta \mathbf{B}(\mathbf{x})}{B_0}\right)$$
$$\frac{d}{dT}\frac{\mathbf{x}}{\ell} = \mathbf{R}.$$

$$egin{aligned} & \mathbf{v}^{n+1/2} - \mathbf{v}^{n-1/2} \ \Delta t &= rac{q}{m} \left[\mathbf{E} + rac{\mathbf{v}^{n+1/2} + \mathbf{v}^{n-1/2}}{2} imes \mathbf{B}
ight] \ & \mathbf{v}^{n-1/2} &= & \mathbf{v}^{-} - rac{q\mathbf{E}}{m} rac{\Delta t}{2} & \mathbf{v}^{n+1/2} &= & \mathbf{v}^{+} + rac{q\mathbf{E}}{m} rac{\Delta t}{2} \ & \mathbf{v}^{n+1/2} &= & \mathbf{v}^{+} + rac{q\mathbf{E}}{m} rac{\Delta t}{2} \ & \mathbf{v}^{n+1/2} &= & \mathbf{v}^{+} + rac{q\mathbf{E}}{m} rac{\Delta t}{2} \end{aligned}$$

Requirements for an Advanced Synthetic Turbulence Model

- i) The synthetic magnetic fields have to be divergence free: $\nabla \cdot \mathbf{B}^{\dagger} = \mathbf{0}$.
- ii) The synthetic fields need to be homogeneous.

iii) The synthetic fields should reproduce a predefined energy spectrum (Kolmogorov, 1941; Iroshnikov, 1963; Kraichnan, 1965; Boldyrev, 2005).

iv) There should be no restriction other than computational ones for a maximum Reynolds number.

v) The spectrum should be anisotropic, which means that it should have different exponents perpendicular and parallel to a local guide field (Goldreich & Sridhar, 1995; Boldyrev, 2005).

vi) The generation of the synthetic fields must be local and adaptive in space.

vii) The synthetic turbulence should exhibit intermittency, as prescribed by a given intermittency model.

Magnetostatic Turbulence (following Shalchi 2020 review)

$$\delta \mathbf{B}(\mathbf{x}) = \sqrt{2} \delta B \sum_{n=1}^{N} A(k_n) \boldsymbol{\xi}_n \cos[\mathbf{k}_n \cdot \mathbf{x} + \beta_n]$$

RUB

$$A^{2}(k_{n}) = G(k_{n})\Delta k_{n} \left(\sum_{m=1}^{N} G(k_{m})\Delta k_{m}\right)^{-1}$$

$$G(k_n) = \frac{k_n^q}{(1+k_n^2)^{(s+q)/2}}.$$

 $\mathbf{B}(\mathbf{x},t) = B_0 \mathbf{e}_z + \delta \mathbf{B}(\mathbf{x},t).$

 $\mathbf{k}_n = k_n \mathbf{e}_{k,n}$

Turbulence model	η_n	α_n	Φ_n	Wave numbers	q
Slab	1	0	Random	$k_n = \ell_{\parallel} k_{\parallel}$	0
Two-dimensional	0	0	Random	$k_n = \ell_{\perp} k_{\perp}$	2 or 3
Isotropic	Random	Random	Random	$k_n = \ell_0 k$	3
Noisy slab model	0	0	Random	$k_n = \ell_\perp k_\perp, k_m = \ell_\parallel k_\parallel$	0
NRMHD	0	0	Random	$k_n = \ell_\perp k_\perp, k_m = \ell_\parallel k_\parallel$	3

 $\delta \mathbf{B}(\mathbf{x}) = \sqrt{2} \delta B \sum_{n=1}^{N} A(k_n) \boldsymbol{\xi}_n \cos[\mathbf{k}_n \cdot \mathbf{x} + \beta_n]$

Isotropic, Gaussian Turbulence

Example Results for the Diffusion Coefficient RUB

Fig. 16 Diffusion coefficients and distribution functions for pure slab turbulence, a magnetic rigidity of R = 0.1, and a magnetic field ratio of $\delta B_{slab}^2/B_0^2 = 1$. The used parameters T, R, K_{\parallel} , and D_{\parallel} are defined in

Shalchi 2020

Influence of Intermittency? Shukurov 2017

RUB

C ss k

Cosmic Rays in Intermittent Magnetic Fields

Anvar Shukurov¹, Andrew P. Snodin², Amit Seta¹, Paul J. Bushby¹, and Toby S. Wood¹ ¹School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK; a.seta1@ncl.ac.uk, amitseta90@gmail.com ²Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand *Received 2017 February 8; revised 2017 March 12; accepted 2017 March 31; published 2017 April 12*

2. Magnetic Field Produced by Dynamo Action

We generate intermittent, statistically isotropic, fully threedimensional random magnetic fields b by solving the induction equation with a prescribed velocity field u:

$$\frac{\partial \boldsymbol{b}}{\partial t} = \nabla \times (\boldsymbol{u} \times \boldsymbol{b}) + R_{\rm m}^{-1} \nabla^2 \boldsymbol{b}, \qquad \nabla \cdot \boldsymbol{b} = 0.$$

Figure 1. Isosurfaces of magnetic field strength $b^2/b_0^2 = 2.5$ (blue) and $b^2/b_0^2 = 5$ (yellow) with b_0 the rms magnetic field, for magnetic field generated by the KS flow (3) at $R_m = 1082$ (left) and for the same magnetic field after Fourier phase randomization as described in the text (second from left). Magnetic field generated by the W flow (2) is similarly affected (not shown). The second from right panel shows the PDFs of a magnetic field component b_x for the original (KS, W: solid) and randomized (KS (R), W (R): dashed) magnetic fields obtained with both velocity fields (only $b_x > 0$ is shown as the PDFs are essentially symmetric about $b_x = 0$). The randomized fields have almost perfectly Gaussian statistics, whereas magnetic intermittency leads to heavy tails. The panel on the right shows the fractional volume within magnetic structures where $b \ge \nu b_0$, with b_0 the rms field strength, as a function of ν for the intermittent magnetic field produced by the flow (3) (solid for $R_m = 3182$ and dashed for $R_m = 1082$) and its Gaussian counterpart (dashed–dotted for $R_m = 3142$ and 1082) obtained by Fourier phase randomization; the filling factor of the randomized fields is independent of R_m .

Synthetic Turbulence with Intermittency

Following Muzy 2019

New approach:
$$\mathbf{B}(\mathbf{x}) = \nabla \times \int_0^\infty s^{H-2} \left(e^{\omega_s} * \psi_s \right) (\mathbf{x}) \, \mathrm{d}s$$

 $\omega_s(\mathbf{x})$ is a Gaussian random field resolved at scale s with correlation $\langle \omega_s(\mathbf{x})\omega_s(\mathbf{y})\rangle \sim 1/\log \|\mathbf{x} - \mathbf{y}\|$

 $\psi(\mathbf{X}), \
abla imes \cdot$

 $\|\mathbf{B}(\mathbf{x})\|$

Examples of the New Model

Phase Randomization (Field components are normalized to unit standard deviation)

12

- 10

- 8

6

Intermittent ($\mu = 0.25$)

Randomized Phases

RUB

8

- 7

6

5

3

RUB

Spectra and structure function exponent scaling

Ideas using 'Minimal Lagrangian Map'

Following Subedi et al. 2014

From Subedi et al. 2014

Comparison of Methods

RUB

MHD with stochastic driver vs synthetic methods

Comparison of Methods

Particle Orbits (black) and Field Lines (red) in MHD and Random Phase Field

Comparison of Methods

RUB

Results for the diffusion coefficients

Transport in Parker background field

CME Snapshots from SWMF Code (M. Jin)

RUB

Particle transport and (synthetic) turbulence

- Two approaches to particle transport: Fokker-Planck formulation (diffusion) or full orbit testparticle calculations
- Particle transport in synthetic turbulent fields has been studied extensively with numerical methods in the past
- Often issues with limited resolution and energy conservation, only periodic boxes
- Almost always relying on random phase approximations -> no correlations and intermittency in synthetic turbulence

Upcoming work

- Study cases for isotropic and anisotropic synthetic turbulence and MHD turbulence as benchmark
- Extend to intermittent fields and study energy dependence of diffusion. Non-diffusive regimes (super- and subdiffusion)?
- Work on embedding in large scale background field, e.g. Heliospheric Parker spiral field, Galactic field

