

Investigating Charged Particle Transport in Non-Gaussian Magnetic Turbulence Models
CRPropa Workshop, September 2023

Frederic Effenberger, Jeremiah Lübke, Horst Fichtner, Rainer Grauer
Ruhr-University Bochum, Germany

Overview

- Introduction
- Energetic particle transport
- Synthetic turbulence modelling
- Particles in turbulence
- Summary

The Heliosphere \& ISM

The Interstellar Medium

Interstellar Medium

Oort
Cloud

Particle Transport in the Heliosphere

How do particles travel from Sun to Earth?

ISSI Team Jeffrey \& Effenberger

RUB
A Primer on Focused Solar Energetic Particle Transport Basic physics and recent modelling results

Jabus van den Berg • Du Toit Strauss Frederic Effenberger

1D Solar Energetic Particle Modelling

RUB

Basic 1D focused transport equation

$$
\frac{\partial f}{\partial t}+\frac{\partial}{\partial s}[\mu v f]+\frac{\partial}{\partial \mu}\left[\frac{\left(1-\mu^{2}\right) v}{2 L(s)} f\right]=\frac{\partial}{\partial \mu}\left[D_{\mu \mu} \frac{\partial f}{\partial \mu}\right]
$$

$$
D_{\mu \mu}^{\mathrm{QLT}}(\mu)=D_{0}\left(1-\mu^{2}\right)|\mu|^{q-1}
$$

If S and M represents the stochastic variables corresponding to s and μ, respectively, then the two first order SDEs equivalent to the Roelof equation (Eq. 9) are

$$
\begin{aligned}
\mathrm{d} S & =\mu v \mathrm{~d} t \\
\mathrm{~d} M & =\left[\frac{\left(1-\mu^{2}\right) v}{2 L(s)}+\frac{\partial D_{\mu \mu}}{\partial \mu}\right] \mathrm{d} t+\sqrt{2 D_{\mu \mu}} \mathrm{d} W_{\mu}(t)
\end{aligned}
$$

where $\mathrm{d} W_{\mu}(t)$ is a Wiener process. These SDEs are solved using the Euler-Maruyama scheme,

$$
\begin{aligned}
S(t+\Delta t) & =S(t)+M(t) v \Delta t \\
M(t+\Delta t) & =M(t)+\left[\frac{\left(1-M^{2}(t)\right) v}{2 L(S(t))}+\left.\frac{\partial D_{\mu \mu}}{\partial \mu}\right|_{\mu=M(t)}\right] \Delta t+\sqrt{2 D_{\mu \mu}(M(t)) \Delta t} \Lambda
\end{aligned}
$$

Anomalous Diffusion

RUB

Subaiffusion
(extended waiting times)

Superdiffusion (Lévy-Flights)

Anomalous Diffusion

Gaussian
$(\Delta x)^{2} \propto t$
Anomalous
$(\Delta x)^{2} \propto t^{\zeta}$

$$
\begin{array}{ll}
\text { Superdiffusion: } & 1<\zeta<2 \\
\text { Subdiffusion: } & 0<\zeta<1
\end{array}
$$

Idea: Generalize Diffusion Equation to non-integer derivatives
$\frac{\partial f}{\partial t}=\kappa \frac{\partial^{\alpha} f}{\partial|x|^{\alpha}}+a \frac{\partial f}{\partial x}+\delta(x)$
Using symmetric fractional Riesz derivative (generalized Laplacian)

$$
\begin{aligned}
\frac{\partial^{\alpha} f(x, t)}{\partial|x|^{\alpha}}= & \frac{1}{\pi} \sin \left(\frac{\pi}{2} \alpha\right) \Gamma(1+\alpha) \\
& \times \int_{0}^{\infty} \frac{f(x+\xi)-2 f(x)+f(x-\xi)}{\xi^{1+\alpha}} d \xi
\end{aligned}
$$

The Complexity of Physics Based CR/SEP Models

Towards a "complete" description of SEP transport...

Towards SEP nowcasting

RUB
Example of multiple injections (100 keV Electrons)

Observations of Intermittency in the SW

RUB

Turbulence such as in the Solar Wind or Interstellar Medium is highly intermittent

Important 2-point statistics: Increments $\delta B_{\tau}=B(t+\tau)-B(t)$, Structure functions $\left\langle\delta B_{\tau}^{q}\right\rangle \propto \tau^{\zeta_{q}}$

[J. Lübke]

(Hydro) Intermittency Models

RUB

Longitudinal velocity increments:

$\delta_{r} v(\mathbf{x}, t)=(\mathbf{u}(\mathbf{x}+\mathbf{r}, t)-\mathbf{u}(\mathbf{x}, t)) \cdot \frac{\mathbf{r}}{r}$
$\left\langle\left(\delta_{r} v\right)^{n}\right\rangle \sim|r| \zeta_{n}$

(i.) Kolmogorov's theory K41:

The monofractal K41 phenomenology [3] states that $\left\langle\left(\delta_{r} v\right)^{n}\right\rangle=C_{n}\langle\varepsilon\rangle^{n / 3} r^{n / 3}$ and an evaluation of the reduced Kramers-Moyal coefficients (17) suggests that it can be reproduced by just a single Kramers-Moyal coefficient

$$
K_{n}= \begin{cases}1 / 3 & \text { for } n \leq 1 \tag{19}\\ 0 & \text { for } n>1\end{cases}
$$

(ii.) Oboukhov-Kolmogorov theory OK62:
$\left\langle\left(\delta_{r} v\right)^{n}\right\rangle=C_{n}\langle\varepsilon\rangle^{\frac{n}{3}} r^{\frac{n}{3}}\left(\frac{r}{L}\right)^{-\frac{n(n-3) \mu}{18}}$

Observations of Intermittency in the SW

RUB
[Telloni et al. 2021]

SolO Observations

Figure 5. Trace of the magnetic spectral matrix $\delta \boldsymbol{B}^{2}$ (top left), magnetic compressibility spectrum C (top right), and flatness \mathcal{F} as a function of the spacecraft frequency (bottom left) for PSP (red) and SolO (blue) radially aligned intervals. Power-law fits are displayed as thick lines, while relative scaling exponents are reported in the legends. Bottom right: comparison of the scaling exponents $\xi_{\text {o }}$ of the q th-order structure functions for PSP (red) and SolO (blue) magnetic field RTN components and turbulence (green stars; Benzi et al. 1993) and the classical K41 $(q / 3)$ Kolmogorov law (dotted line; Kolmogorov 1941) are also displayed.

Full-Orbit Simulation

RUB

Solving the Newton-Lorentz Equations for many charged (Test) Particles

Dimensionless Time: $\quad T=\Omega t$

Dimensionless Rigidity: $\quad \mathbf{R}:=\mathbf{v} /(\Omega \ell)$

With gyro frequency Ω and typical length scale (bendover scale) ℓ
In the literature, often RK methods are used. We use the Boris Push method for energy conservation:

$$
\begin{aligned}
& \frac{d}{d T} \mathbf{R}=\mathbf{R} \times\left(\mathbf{e}_{z}+\frac{\delta \mathbf{B}(\mathbf{x})}{B_{0}}\right) \\
& \frac{d}{d T} \frac{\mathbf{x}}{\ell}=\mathbf{R}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\mathbf{v}^{n+1 / 2}-\mathbf{v}^{n-1 / 2}}{\Delta t}=\frac{q}{m}\left[\mathbf{E}+\frac{\mathbf{v}^{n+1 / 2}+\mathbf{v}^{n-1 / 2}}{2} \times \mathbf{B}\right] \\
& \mathbf{v}^{n-1 / 2}=\mathbf{v}^{-}-\frac{q \mathbf{E}}{m} \frac{\Delta t}{2} \quad \mathbf{v}^{n+1 / 2}=\mathbf{v}^{+}+\frac{q \mathbf{E}}{m} \frac{\Delta t}{2}
\end{aligned}
$$

$$
\frac{\mathbf{v}^{+}-\mathbf{v}^{-}}{\Delta t}=\frac{q}{2 m}\left(\mathbf{v}^{+}+\mathbf{v}^{-}\right) \times \mathbf{B}
$$

Synthetic Turbulence

Requirements for an Advanced Synthetic Turbulence Model
i) The synthetic magnetic fields have to be divergence free: $\nabla \cdot B^{\vec{*}}=0$.
ii) The synthetic fields need to be homogeneous.
iii) The synthetic fields should reproduce a predefined energy spectrum (Kolmogorov, 1941; Iroshnikov, 1963; Kraichnan, 1965; Boldyrev, 2005).
iv) There should be no restriction other than computational ones for a maximum Reynolds number.
v) The spectrum should be anisotropic, which means that it should have different exponents perpendicular and parallel to a local guide field (Goldreich \& Sridhar, 1995; Boldyrev, 2005).
vi) The generation of the synthetic fields must be local and adaptive in space.
vii) The synthetic turbulence should exhibit intermittency, as prescribed by a given intermittency model.

Synthetic Turbulence

Magnetostatic Turbulence (following Shalchi 2020 review)
$\mathbf{B}(\mathbf{x}, t)=B_{0} \mathbf{e}_{z}+\delta \mathbf{B}(\mathbf{x}, t)$.
$\mathbf{k}_{n}=k_{n} \mathbf{e}_{k, n}$
$\mathbf{e}_{k, n}=\left(\begin{array}{c}\sqrt{1-\eta_{n}^{2}} \cos \phi_{n} \\ \sqrt{1-\eta_{n}^{2}} \sin \phi_{n} \\ \eta_{n}\end{array}\right)$
$A^{2}\left(k_{n}\right)=G\left(k_{n}\right) \Delta k_{n}\left(\sum_{m=1}^{N} G\left(k_{m}\right) \Delta k_{m}\right)^{-1}$
$G\left(k_{n}\right)=\frac{k_{n}^{q}}{\left(1+k_{n}^{2}\right)^{(s+q) / 2}}$.

$$
\delta \mathbf{B}(\mathbf{x})=\sqrt{2} \delta B \sum_{n=1}^{N} A\left(k_{n}\right) \boldsymbol{\xi}_{n} \cos \left[\mathbf{k}_{n} \cdot \mathbf{x}+\beta_{n}\right]
$$

$$
\boldsymbol{\xi}_{n}=\left(\begin{array}{c}
-\sin \phi_{n} \cos \alpha_{n}+\eta_{n} \cos \phi_{n} \sin \alpha_{n} \\
\cos \phi_{n} \cos \alpha_{n}+\eta_{n} \sin \phi_{n} \sin \alpha_{n} \\
-\sqrt{1-\eta_{n}^{2}} \sin \alpha_{n}
\end{array}\right)
$$

Turbulence model	η_{n}	α_{n}	Φ_{n}	Wave numbers	q		
Slab	1	0	Random	$k_{n}=\ell_{\\|} k_{\\|}$	0		
Two-dimensional	0	0	Random	$k_{n}=\ell_{\perp} k_{\perp}$	2 or 3		
Isotropic	Random	Random	Random	$k_{n}=\ell_{0} k$	3		
Noisy slab model	0	0	Random	$k_{n}=\ell_{\perp} k_{\perp}, k_{m}=\ell_{\\|} k_{\\|}$	0		
NRMHD	0	0	Random	$k_{n}=\ell_{\perp} k_{\perp}, k_{m}=\ell_{\\|} k_{\\|}$	3		

Synthetic Turbulence

RUB

$$
\delta \mathbf{B}(\mathbf{x})=\sqrt{2} \delta B \sum_{n=1}^{N} A\left(k_{n}\right) \boldsymbol{\xi}_{n} \cos \left[\mathbf{k}_{n} \cdot \mathbf{x}+\beta_{n}\right]
$$

Example Results for the Diffusion Coefficient RUB

Fig. 16 Diffusion coefficients and distribution functions for pure slab turbulence, a magnetic rigidity of $R=0.1$, and a magnetic field ratio of $\delta B_{\text {slab }}^{2} / B_{0}^{2}=1$. The used parameters $T, R, K_{\|}$, and $D_{\|}$are defined in

Influence of Intermittency? Shukurov 2017

Cosmic Rays in Intermittent Magnetic Fields

Anvar Shukurov ${ }^{1}$, Andrew P. Snodin ${ }^{2}$, Amit Seta ${ }^{1}$, Paul J. Bushby ${ }^{1}$, and Toby S. Wood ${ }^{1}$
${ }^{1}$ School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK; a.seta1 @ ncl.ac.uk, amitseta90@gmail.com ${ }^{2}$ Department of Mathematics, Faculty of Applied Science, King Mongkut's University of Technology North Bangkok, Bangkok 10800, Thailand Received 2017 February 8; revised 2017 March 12; accepted 2017 March 31; published 2017 April 12

2. Magnetic Field Produced by Dynamo Action

We generate intermittent, statistically isotropic, fully threedimensional random magnetic fields \boldsymbol{b} by solving the induction equation with a prescribed velocity field \boldsymbol{u} :

Figure 1. Isosurfaces of magnetic field strength $b^{2} / b_{0}^{2}=2.5$ (blue) and $b^{2} / b_{0}^{2}=5$ (yellow) with b_{0} the rms magnetic field, for magnetic field generated by the KS flow (3) at $R_{\mathrm{m}}=1082$ (left) and for the same magnetic field after Fourier phase randomization as described in the text (second from left). Magnetic field generated by the W flow (2) is similarly affected (not shown). The second from right panel shows the PDFs of a magnetic field component b_{x} for the original (KS, W: solid) and randomized (KS (R), W (R): dashed) magnetic fields obtained with both velocity fields (only $b_{x}>0$ is shown as the PDFs are essentially symmetric about $b_{x}=0$). The randomized fields have almost perfectly Gaussian statistics, whereas magnetic intermittency leads to heavy tails. The panel on the right shows the fractional volume within magnetic structures where $b \geqslant \nu b_{0}$, with b_{0} the rms field strength, as a function of ν for the intermittent magnetic field produced by the flow (3) (solid for $R_{\mathrm{m}}=3182$ and dashed for $R_{\mathrm{m}}=1082$) and its Gaussian counterpart (dashed-dotted for $R_{\mathrm{m}}=3142$ and 1082) obtained by Fourier phase randomization; the filling factor of the randomized fields is independent of R_{m}.

Synthetic Turbulence with Intermittency
 Following Muzy 2019

New approach: $\mathbf{B}(\mathbf{x})=\nabla \times \int_{0}^{\infty} s^{H-2}\left(e^{\omega_{s}} * \psi_{s}\right)(\mathbf{x}) \mathrm{d} s$
$\omega_{s}(\mathbf{x})$ is a Gaussian random field resolved at scale s with correlation $\left\langle\omega_{s}(\mathbf{x}) \omega_{s}(\mathbf{y})\right\rangle \sim 1 / \log \|\mathbf{x}-\mathbf{y}\|$

$e^{\omega_{s}(\mathbf{x})}$

$$
\psi(\mathbf{x}), \nabla \times
$$

$\|\mathbf{B}(\mathbf{x})\|$

Examples of the New Model

RUB
Phase Randomization (Field components are normalized to unit standard deviation)
Intermittent ($\mu=0.25$)

Randomized Phases

Synthetic Turbulence
 Spectra and structure function exponent scaling

RUB

Ideas using 'Minimal Lagrangian Map'

Following Subedi et al. 2014

From Subedi et al. 2014

Comparison of Methods

MHD with stochastic driver vs synthetic methods

Comparison of Methods

RUB

Particle Orbits (black) and Field Lines (red) in MHD and Random Phase Field

MHD

Random Phases

Comparison of Methods

RUB

Results for the diffusion coefficients

Transport in Parker background field

CME Snapshots from SWMF Code (M. Jin)

Summary

Particle transport and (synthetic) turbulence

- Two approaches to particle transport: Fokker-Planck formulation (diffusion) or full orbit testparticle calculations
- Particle transport in synthetic turbulent fields has been studied extensively with numerical methods in the past
- Often issues with limited resolution and energy conservation, only periodic boxes
- Almost always relying on random phase approximations -> no correlations and intermittency in synthetic turbulence

Upcoming work

- Study cases for isotropic and anisotropic synthetic turbulence and MHD turbulence as benchmark
- Extend to intermittent fields and study energy dependence of diffusion. Non-diffusive regimes (super- and subdiffusion)?
- Work on embedding in large scale background field, e.g. Heliospheric Parker spiral field, Galactic field

