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Fig. 1 Left: Illustration of a proton’s position (blue vector), guiding centre (purple vector),
and directional Larmor radius (green vector) during its gyration (black circle, with arrows
indicating the direction of rotation) around the background magnetic field line (red vector).
This figure was adapted from Northrop (1961). Right: Simulation of a proton in a constant and
uniform magnetic field performed with a fourth-order Runge-Kutta scheme. The trajectories
of the particle (solid red) and its guiding centre (dotted blue: Eq. 7; dashed purple: running
average of particle’s position over a gyration) are shown, together with a single background
magnetic field line (dashed black; coinciding with the guiding centre).

2.2 Magnetic Focusing

The theoretical background and derivations of this section is well documented in
plasma physic textbooks and will only be summarised. When the magnetic field
has a gradient along it, the particle will experience a force parallel to the magnetic
field which will be in the opposite direction of the gradient, Fk = �M(@B0/@s) =
�MrkB0, where ds is a line segment parallel to the magnetic field, rk denotes the

gradient along the magnetic field, and M = mv
2

?/2B0 is the particle’s magnetic
moment. Due to the invariance of the magnetic moment (dM/dt = 0) in the
absence of magnetic turbulence and the conservation of kinetic energy, this force
is accompanied by an interchange between parallel and perpendicular energy: as
the particle moves into a region of larger magnetic field strength, its perpendicular
speed increases, with the e↵ect that its parallel speed decreases. Ultimately this
causes the particle’s motion to be reversed and the particle is mirrored. Not all
particles, however, will be mirrored. It can be shown that a particle starting out
in a region with field strength B with

|µ| > µm =

r
1� B

Bm
, (8)

will not be able to penetrate a region of magnetic field strength Bm (Rossi and
Olbert 1970; Chen 1984; Choudhuri 1998).

Due to the decrease of the heliospheric magnetic field (HMF) strength with
heliocentric radius (Parker 1958, see also Appendix F), SEPs will experience mag-
netic focusing. As a particle moves into regions of weaker parallel magnetic fields,
the particle’s perpendicular speed will decrease while its parallel speed will in-
crease, causing the particle’s motion to become increasingly ballistic. Focusing is
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neglected in this frame. Alternatively, the Vlaslov equation, essentially the colli-
sionless Boltzmann equation with the Lorentz force substituted, can be used as a
point of departure. The distribution function and the electric and magnetic field
must then be written as the sum of a large scale average and a rapid fluctuating
part, with the fluctuating part acting as a perturbation on the average part. Such
derivations, as given by Zhang (2006) or Zank (2014), lead to the focused transport
equation (FTE), but are lengthy and beyond the scope of the current discussion.

Although the name “focused transport equation” might be a misnomer, as it
describes the evolution of any anisotropic distribution, it is appropriate in the case
of SEPs since the anisotropy is caused primarily by focusing. The simplest form
of the FTE, is that of Roelof (1969) without advection or energy losses

@f

@t
+

@

@s
[µvf ] +

@

@µ


(1� µ

2)v
2L(s)

f

�
=

@

@µ


Dµµ

@f

@µ

�
, (9)

where L(s) is the focusing length of the magnetic field given by Eq. 22 and Dµµ is
the pitch-angle di↵usion coe�cient (PADC) describing the random changes of the
pitch-angle due to turbulence. This equation describes the evolution of the distri-
bution function f(s;µ; t) for a constant particle speed v. The various terms, from
left to right, describe temporal, spatial (the streaming of particles along the mag-
netic field, since µv is their parallel speed), and pitch-angle changes (discussed in
Appendix D) on the left hand side, and pitch-angle di↵usion on the right hand side.
It should be noticed that the FTE is a highly non-linear, second order, parabolic
partial di↵erential equation. The di↵erent processes’ e↵ects cannot be added lin-
early because each process is dependent on quantities which are a↵ected by the
other processes. The various terms therefore a↵ect one another and the dominat-
ing process is ultimately determined by its relative strength. This non-linearity
and competition between terms imply that none of the terms can be neglected to
model SEPs realistically.

The PADC must be specified and a variety of options are available from di↵er-
ent theories. Three rather simple forms will be used here for illustrative proposes.
A widely used PADC is that of Beeck and Wibberenz (1986),

D
BW

µµ = D0(1� µ
2)(|µ|q�1 +H), (10)

based on quasi-linear theory (QLT; Jokipii 1966; Shalchi 2009). Here D0 is the
scattering amplitude, q is the spectral index of the magnetic turbulence’s inertial
range, and H is an arbitrary (in terms of its value) correction to describe the
inclusion of dynamical e↵ects. If q = 1 and H = 0, then

D
iso

µµ(µ) = D0(1� µ
2) (11)

is called isotropic scattering. This PADC can be used in the presence of very strong
turbulence, but if the turbulence is weaker and pitch-angle scattering is caused by
resonances with a spectrum of waves, then anisotropic scattering must be used. If
dynamical e↵ects are neglected (H = 0), then

D
QLT

µµ (µ) = D0(1� µ
2)|µ|q�1 (12)

has the known problem of a resonance gap at µ = 0 (DQLT

µµ (0) = 0) (Dröge 2000a).
Fig. 6 shows the di↵erent PADCs and their derivatives. Care should be taken here
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Fig. 5 Illustration of the various processes and definitions introduced. Shown is the particle’s
momentum space in a field-aligned coordinate system. See Section 2.4 for details. This picture
was inspired by Prinsloo et al. (2019).

vectors have the same magnitude. If the particles were to have di↵erent energies
and gyrophases, but the same pitch-angle, then their momentum vectors will form
the shaded cone. The cone will then represent a possible anisotropic distribution
as the particles have a preferred direction of motion along the background magnetic

field. For a gyrotropic distribution of mono-energetic particles, pitch-angle scat-
tering will cause the circle to change into a spherical shell (also referred to as
a shell-distribution), assuming that the scattering does not change the particles’
energy and that enough time has elapsed. Similarly, pitch-angle scattering will
cause the cone of an anisotropic distribution to become a filled sphere. In such a
case, the distribution will be called isotropic with particles of all energies moving
in all directions. Turbulence can therefore drastically change the characteristics of
the original particle distribution and will mostly act to isotropise an anisotropic
distribution.
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A A Finite Di↵erence Solver

As shown in this work, analytical approximations of Eq. 9 have very severe limitations, and
therefore, it has to be integrated (solved) numerically to capture the transport processes in-
volved. Such a numerical implementation, for this spatially 1D version of the transport equa-
tion, is discussed by Strauss et al. (2017b), which is based on the numerical techniques discussed
in Strauss and Fichtner (2015). Details are also given in the dissertation of Heita (2018). This
model has subsequently been developed to be more user-friendly, and the source-code thereof
can be found at https://github.com/RDStrauss/SEP_propagator. The code is published un-
der the Creative Commons license, but is not intended to be used for commercial applications.
We ask anyone using this model to reference this paper in all research outputs and to contact
the authors when used extensively.

The code contains a number of user-defined inputs, such as the particle species under
consideration (i.e. electrons or protons), the e↵ective radial MFP, the SW speed, the kinetic
energy of the particles, and di↵erent options regarding the injected SEP distribution at the
inner boundary condition. Details can be found in the comments section of the source-code. In
Section 3.3.3, this finite di↵erence solver was applied to the 7 February 2010 electron event as
observed by STEREO B. Fig. 12 only showed a best fit scenario that can reproduce the observed
particle intensity and anisotropy very well. Here, the sensitivity of the code to parameter
variation is illustrated with four cases in Fig. 21. The top row shows the slower rise for a
smaller MFP, in the left panel, and a quicker rise and quicker decay for a larger MFP, in the
right panel. The bottom row shows a similar variation for a longer acceleration time, in the left
panel, and a longer escape time, in the right panel, in the injection function. These example
solutions are also included in the online repository.

B A Stochastic Di↵erential Equation Solver

Stochastic calculus is a study area with several works dealing with its mathematical formal-
ism and application to a variety of problems, including Gardiner (1985), van Kampen (1992),
Kloeden and Platen (1995), Øksendal (2000), Lemons (2002), and Strauss and E↵enberger
(2017). Of special interest is Gardiner (1985), Kloeden and Platen (1995), and Strauss and Ef-
fenberger (2017), which gives an introduction of stochastic calculus specifically for the fields of
natural sciences, an introduction focusing on numerical methods to solve stochastic di↵erential
equations (SDEs), and a review of the application of this to CR modelling with toy models to
introduce the basic concepts, respectively. SDEs can be computationally expensive and these
types of models did not become feasible until the dawn of parallel-processing. Nonetheless,
MacKinnon and Craig (1991) first applied SDEs in solving the FTE for binary collisions of
particles with ‘cold’ hydrogen atoms in the chromosphere and Kocharov et al. (1998) first used
them to solve the SEP model of Ru↵olo (1995). A three dimensional focused transport model
for SEPs with and without energy losses are presented by Qin et al. (2006) or Zhang et al.
(2009) and Dröge et al. (2010), respectively. (I didn’t add Kopp et al. (2012) because it don’t
have much to do with SEPs. Yes there are some useful discussions and stu↵, but then we’ll
have to add Pei et al. (2010) and Bobik et al. (2016) and half a dozen other references which
can be found in THHG2SDEs?)

If S and M represents the stochastic variables corresponding to s and µ, respectively, then
the two first order SDEs equivalent to the Roelof equation (Eq. 9) are

dS = µv dt

dM =


(1� µ

2)v

2L(s)
+

@Dµµ

@µ

�
dt+

p
2DµµdWµ(t),

where dWµ(t) is a Wiener process. These SDEs are solved using the Euler-Maruyama scheme,

S(t+�t) = S(t) +M(t)v�t
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Idea: Generalize Diffusion Equation to non-integer derivatives
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f (x,∞) = a−1, x < 0. (4)

In the remainder of the paper, we investigate the follow-
ing fractional differential equation that generalizes the usual
diffusion-advection equation:

∂f

∂t
= κ

∂αf

∂|x|α
+ a

∂f

∂x
+ δ(x) (5)

(e.g., Stern et al. 2014). The equation governs the evolution of
a distribution function f(x, t) for t > 0 and −∞ < x < ∞. For
simplicity, we assume the initial condition

f (x, 0) = 0. (6)

The advection speed a and diffusion coefficient κ (now with
dimensions lengthα/time) are positive constants. We use the
Riesz derivative to define a fractional spatial derivative:

∂αf (x, t)
∂|x|α

= 1
π

sin
(π

2
α
)

Γ(1 + α)

×
∫ ∞

0

f (x + ξ ) − 2f (x) + f (x − ξ )
ξ 1+α

dξ (7)

(Samko et al. 1993; Saichev & Zaslavsky 1997). Because the
derivative corresponds to a fractional Laplacian operator in
higher dimensions, an alternative notation −(−∆)α/2f is also
used (Mainardi et al. 2001). Although the regularized form
above is defined for 0 < α < 2, in the following we are mainly
interested in the superdiffusive case 1 < α < 2.

3. FOURIER TRANSFORM SOLUTION
AND ASYMPTOTICS

The Fourier transform gives a convenient method of solv-
ing the fractional diffusion-advection equation on the interval
−∞ < x < ∞. Taking the Fourier transform of Equation (5)
yields

∂ f̃

∂t
= −κ|k|αf̃ + iakf̃ +

1
2π

, (8)

where

f̃ (k, t) = 1
2π

∫ ∞

−∞
f (x, t) exp(−ikx)dx. (9)

Integration of the first-order equation for f̃ yields

f̃ (k, t) = 1
2π

1 − exp[(iak − κ|k|α)t]
κ|k|α − iak

, (10)

where an integration constant is specified by the initial condition
f̃ (k, 0) = 0. Now the inverse Fourier transform gives the
solution

f (x, t) = 1
2π

∫ ∞

−∞

1 − exp[(iak − κ|k|α)t]
κ|k|α − iak

exp (ikx) dk.

(11)
In the non-diffusive case, κ = 0 and the integral is evaluated to
give an expanding “top-hat” solution

f (x, t)|κ=0 = f0(x, t) = 1
2a

[
sgn(x + at) − sgn(x)

]
. (12)

The solution of Equation (5) can also be expressed as

f (x, t) =
∫ t

0
G(x + at ′, t ′)dt ′, (13)

where the Green’s function G(x, t) satisfies the fractional
diffusion equation

∂G

∂t
= κ

∂αG

∂|x|α
+ δ(x)δ(t). (14)

Its Fourier transform is given by
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1
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It follows that

G̃(k, t) = 1
2π

exp(−κ|k|αt), (16)

and the inverse Fourier transform yields

G(x, t) = 1
π

∫ ∞

0
exp(−κkαt) cos(kx)dk (17)

(e.g., Chukbar 1995).
An asymptotic expression for G(x, t) is obtained by integrating

Equation (17) by parts and applying an analogue of Watson’s
lemma for Fourier type integrals (e.g., Ablowitz & Fokas 1997).
For x % (κt)1/α , the result is

G(x, t) ≈ 1
π

sin
(π

2
α
)

Γ(1 + α)
κt

|x|1+α
. (18)

For x > 0, substitution into Equation (13) yields

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(1 + α)
∫ t

0

κt ′

(x + at ′)1+α
dt ′, (19)

and so the distribution function f(x, t) is given by

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2

[
x1−α − x + αat

(x + at)α

]
(20)

as long as x + at % (κt)1/α and 1 < α < 2. Two limiting cases
are as follows:

f (x, t) ≈ 1
2π

sin
(π

2
α
)

Γ(1 + α)
κt2

x1+α
, x % at, (21)

f (x, t) ≈ 1
π

sin
(π

2
α
)

Γ(α − 1)
κ

a2
x1−α, 0 < x ' at.

(22)

Equation (22) is essentially the asymptotic power law that
was previously used in the data analysis of energetic particles,
accelerated in the solar corona (Trotta & Zimbardo 2011) and at
interplanetary shocks (Perri & Zimbardo 2007, 2009; Sugiyama
& Shiota 2011). For instance, Perri & Zimbardo (2007, 2009)
used a formula for the particle density at a fixed point due to a
shock-associated source moving with a speed Vsh. The formula
follows from our analysis by changing the reference frame.
Suppose a shock, initially located at x0 = −Vsht0, moves at
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used a formula for the particle density at a fixed point due to a
shock-associated source moving with a speed Vsh. The formula
follows from our analysis by changing the reference frame.
Suppose a shock, initially located at x0 = −Vsht0, moves at

2

Using symmetric fractional Riesz derivative (generalized Laplacian)
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(ii.) Oboukhov–Kolmogorov theory OK62:

A first intermittency model which assumes a log-normal distribution of the local rate of energy
dissipation # has been proposed by Kolmogorov [4] and Oboukhov [5].
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Figure 1. Scaling exponents zn of velocity structure functions for the different phenomenologies
discussed in (i.)–(vi.). The crosses that are arranged on the straight n/3-line correspond to the
self-similar K41 phenomenology (i.). Burgers phenomenology (iii.) exhibits the strongest intermittency
behavior whereas the other phenomenologies can only be distinguished for higher orders n. Note that
the OK62 phenomenology (ii.) has a parabolic form that violates the structure function convexity
condition [7] for n � 3

2 + 3
µ (not observable in the figure).

It predicts the scaling of the structure functions according to h(drv)ni = Cnh#i
n
3 r

n
3
� r

L
�� n(n�3)µ

18

where L is the integral length scale and µ is the so-called intermittency coefficient which is of the
order µ ⇡ 0.227 (recent experiments [26], however, suggest a value of µ = 0.17 ± 0.01). As it has been
discussed by Friedrich and Peinke [8], this reduces the Kramers–Moyal expansion to a Fokker–Planck
equation with drift and diffusion coefficient

K1 =
3 + µ

9
and K2 =

µ

9
, (20)

and implies the vanishing of all higher-order coefficients.

(iii.) Burgers scaling:

The velocity structure functions in Burgers turbulence [19] follow the extreme scaling

h(drv)ni =
(

Cn
h#n/2i
nn/2 rn for n < 1,

Cnh#i
n
3 L

n
3 �1r for n � 1.

(21)

Here, the first scaling is due to smooth positive velocity increments in the ramps, whereas the
latter scaling corresponds to negative velocity increments dominated by shocks that form due to the
compressibility of the velocity field in the vicinity of the viscosity n ! 0.

The smooth solutions correspond to a single Kramers–Moyal coefficient, whereas the shock
solutions can only be reproduced by an infinite number of Kramers–Moyal coefficients and we obtain

K1 = 1, Kn = 0 for n > 1 , for positive increments.
Kn = 1, 8 n for negative increments.

(22)
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Abstract: We present a generalized picture of intermittency in turbulence that is based on the theory
of stochastic processes. To this end, we rely on the experimentally and numerically verified finding
by R. Friedrich and J. Peinke [Phys. Rev. Lett. 78, 863 (1997)] that allows for an interpretation of
the turbulent energy cascade as a Markov process of velocity increments in scale. It is explicitly
shown that phenomenological models of turbulence, which are characterized by scaling exponents
zn of velocity increment structure functions, can be reproduced by the Kramers–Moyal expansion
of the velocity increment probability density function that is associated with a Markov process.
We compare the different sets of Kramers–Moyal coefficients of each phenomenology and deduce that
an accurate description of intermittency should take into account an infinite number of coefficients.
This is demonstrated in more detail for the case of Burgers turbulence that exhibits pronounced
intermittency effects. Moreover, the influence of nonlocality on Kramers–Moyal coefficients is
investigated by direct numerical simulations of a generalized Burgers equation. Depending on the
balance between nonlinearity and nonlocality, we encounter different intermittency behavior that
ranges from self-similarity (purely nonlocal case) to intermittent behavior (intermediate case that
agrees with Yakhot’s mean field theory [Phys. Rev. E 63 026307 (2001)]) to shock-like behavior (purely
nonlinear Burgers case).

Keywords: turbulence; stochastic methods; multiscaling; Burgers equation

1. Introduction

The phenomenon of homogeneous and isotropic turbulence can still be considered as one of
the main unsolved problems in classical physics [1,2]. An adequate treatment of the underlying
Navier–Stokes equation should make an assertion about the small-scale fluctuations of the longitudinal
velocity increments

drv(x, t) = (u(x + r, t)� u(x, t)) · r

r
, (1)

in a statistical sense. Here, deviations from Kolmogorov’s mean field theory [3] that predicts h(drv)ni ⇠
h#in/3|r|n/3 are commonly attributed to the intermittent fluctuations of the local energy dissipation
rate # and manifest themselves by a non-self-similar probability density function (PDF) of the velocity
increments. In turn, this implies a nonlinear order dependence for the scaling exponents zn of the
moments h(drv)ni ⇠ |r|zn . In this context, considerable efforts have been devoted to the development
of phenomenological models of turbulence that all try to account for the intermittent character of the
local energy dissipation rate such as the log-normal model [4,5] or the popular model by She and
Leveque [6] (we also refer the reader to the monograph by Frisch [7] for further discussion).
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Furthermore, scaling solutions h(drv)ni ⇠ rzn fix the scale-dependence of D̃(k)(r) as ⇠ 1/r.
At this point, we introduce the reduced Kramers–Moyal coefficients Kk for the order-dependent constant
of proportionality according to D̃(k)(r) = (�1)kKk

k!
1
r . This particular choice leads to a rather simple

correspondence between zn and Kn, which can be seen by integrating

∂

∂r
lnh(drv)ni = �

n

Â
k=1

(�1)k
✓

n
k

◆
Kk

1
r

, (13)

from integral scale L to small scales r

ln

h(drv)ni
h(dLv)ni

�
= �

n

Â
k=1

(�1)k
✓

n
k

◆
ln

h r
L

i
. (14)

Hence, in this alternative formulation of universality in turbulence [18], scaling exponents zn of
structure functions

h(drv)ni = h(dLv)nir�Ân
k=1(�1)k(n

k)Kk . (15)

are related to the sequence of reduced Kramers–Moyal coefficients Kn by a binomial transform T

zn = �
n

Â
k=1

(�1)k
✓

n
k

◆
Kk. (16)

The binomial transform is an involution TT = 1, and, hence, the sequence of reduced
Kramers–Moyal coefficients Kn can be associated with the scaling exponents zn of each
phenomenological model of turbulence according to

Kn = �
n

Â
k=1

(�1)k
✓

n
k

◆
zk. (17)

It should be noted that the binomial transform is usually defined to start from k = 0, which
can readily be included in Equations (16) and (17) since z0 = K0 = 0. Furthermore, the fact that the
reduced Kramers–Moyal coefficients Kn are determined by the scaling exponents zn shows that the
Kramers–Moyal expansion (7) with specific Kramers–Moyal coefficients

D(n)(v, r) =
(�1)nKn

n!
vn

r
, (18)

is general enough to capture the essence of anomalous scaling. In other words, all currently
known phenomenological models of turbulence—characterized by their corresponding sets of scaling
exponents zn as depicted in Figure 1—can be reproduced by the Kramers–Moyal expansion (7) with
Kramers–Moyal coefficients (18) where reduced Kramers–Moyal coefficients Kn are related to the
scaling exponents zn by Equation (17). In the next subsections, we will describe in detail how these
different phenomenological models can be mapped onto the Kramers–Moyal coefficients.

(i.) Kolmogorov’s theory K41:

The monofractal K41 phenomenology [3] states that h(drv)ni = Cnh#in/3rn/3 and an evaluation
of the reduced Kramers–Moyal coefficients (17) suggests that it can be reproduced by just a single
Kramers–Moyal coefficient

Kn =

⇢
1/3 for n  1,
0 for n > 1.

(19)
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(ii.) Oboukhov–Kolmogorov theory OK62:

A first intermittency model which assumes a log-normal distribution of the local rate of energy
dissipation # has been proposed by Kolmogorov [4] and Oboukhov [5].
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Figure 1. Scaling exponents zn of velocity structure functions for the different phenomenologies
discussed in (i.)–(vi.). The crosses that are arranged on the straight n/3-line correspond to the
self-similar K41 phenomenology (i.). Burgers phenomenology (iii.) exhibits the strongest intermittency
behavior whereas the other phenomenologies can only be distinguished for higher orders n. Note that
the OK62 phenomenology (ii.) has a parabolic form that violates the structure function convexity
condition [7] for n � 3

2 + 3
µ (not observable in the figure).

It predicts the scaling of the structure functions according to h(drv)ni = Cnh#i
n
3 r

n
3
� r

L
�� n(n�3)µ

18

where L is the integral length scale and µ is the so-called intermittency coefficient which is of the
order µ ⇡ 0.227 (recent experiments [26], however, suggest a value of µ = 0.17 ± 0.01). As it has been
discussed by Friedrich and Peinke [8], this reduces the Kramers–Moyal expansion to a Fokker–Planck
equation with drift and diffusion coefficient

K1 =
3 + µ

9
and K2 =

µ

9
, (20)

and implies the vanishing of all higher-order coefficients.

(iii.) Burgers scaling:

The velocity structure functions in Burgers turbulence [19] follow the extreme scaling

h(drv)ni =
(

Cn
h#n/2i
nn/2 rn for n < 1,

Cnh#i
n
3 L

n
3 �1r for n � 1.

(21)

Here, the first scaling is due to smooth positive velocity increments in the ramps, whereas the
latter scaling corresponds to negative velocity increments dominated by shocks that form due to the
compressibility of the velocity field in the vicinity of the viscosity n ! 0.

The smooth solutions correspond to a single Kramers–Moyal coefficient, whereas the shock
solutions can only be reproduced by an infinite number of Kramers–Moyal coefficients and we obtain

K1 = 1, Kn = 0 for n > 1 , for positive increments.
Kn = 1, 8 n for negative increments.

(22)
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where L is the integral length scale and µ is the so-called intermittency coefficient which is of the
order µ ⇡ 0.227 (recent experiments [26], however, suggest a value of µ = 0.17 ± 0.01). As it has been
discussed by Friedrich and Peinke [8], this reduces the Kramers–Moyal expansion to a Fokker–Planck
equation with drift and diffusion coefficient

K1 =
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and implies the vanishing of all higher-order coefficients.

(iii.) Burgers scaling:

The velocity structure functions in Burgers turbulence [19] follow the extreme scaling
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n
3 L

n
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Here, the first scaling is due to smooth positive velocity increments in the ramps, whereas the
latter scaling corresponds to negative velocity increments dominated by shocks that form due to the
compressibility of the velocity field in the vicinity of the viscosity n ! 0.

The smooth solutions correspond to a single Kramers–Moyal coefficient, whereas the shock
solutions can only be reproduced by an infinite number of Kramers–Moyal coefficients and we obtain

K1 = 1, Kn = 0 for n > 1 , for positive increments.
Kn = 1, 8 n for negative increments.
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Abstract: We present a generalized picture of intermittency in turbulence that is based on the theory
of stochastic processes. To this end, we rely on the experimentally and numerically verified finding
by R. Friedrich and J. Peinke [Phys. Rev. Lett. 78, 863 (1997)] that allows for an interpretation of
the turbulent energy cascade as a Markov process of velocity increments in scale. It is explicitly
shown that phenomenological models of turbulence, which are characterized by scaling exponents
zn of velocity increment structure functions, can be reproduced by the Kramers–Moyal expansion
of the velocity increment probability density function that is associated with a Markov process.
We compare the different sets of Kramers–Moyal coefficients of each phenomenology and deduce that
an accurate description of intermittency should take into account an infinite number of coefficients.
This is demonstrated in more detail for the case of Burgers turbulence that exhibits pronounced
intermittency effects. Moreover, the influence of nonlocality on Kramers–Moyal coefficients is
investigated by direct numerical simulations of a generalized Burgers equation. Depending on the
balance between nonlinearity and nonlocality, we encounter different intermittency behavior that
ranges from self-similarity (purely nonlocal case) to intermittent behavior (intermediate case that
agrees with Yakhot’s mean field theory [Phys. Rev. E 63 026307 (2001)]) to shock-like behavior (purely
nonlinear Burgers case).

Keywords: turbulence; stochastic methods; multiscaling; Burgers equation

1. Introduction

The phenomenon of homogeneous and isotropic turbulence can still be considered as one of
the main unsolved problems in classical physics [1,2]. An adequate treatment of the underlying
Navier–Stokes equation should make an assertion about the small-scale fluctuations of the longitudinal
velocity increments

drv(x, t) = (u(x + r, t)� u(x, t)) · r

r
, (1)

in a statistical sense. Here, deviations from Kolmogorov’s mean field theory [3] that predicts h(drv)ni ⇠
h#in/3|r|n/3 are commonly attributed to the intermittent fluctuations of the local energy dissipation
rate # and manifest themselves by a non-self-similar probability density function (PDF) of the velocity
increments. In turn, this implies a nonlinear order dependence for the scaling exponents zn of the
moments h(drv)ni ⇠ |r|zn . In this context, considerable efforts have been devoted to the development
of phenomenological models of turbulence that all try to account for the intermittent character of the
local energy dissipation rate such as the log-normal model [4,5] or the popular model by She and
Leveque [6] (we also refer the reader to the monograph by Frisch [7] for further discussion).
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Observations of Intermittency in the SW

is, e.g., referred to Zank et al. 2017, for the relevant theory).
The time intervals with the highest correlation in |B| (0.72 at
0-lag) are found to be 2020 September 27 03:15–04:45 UT at
PSP and 2020 October 1 21:34–23:04 UT at SolO, corresp-
onding to a solar wind bulk speed of 320 km s−1 at PSP. Both
the temporal localization of the parcel and the wind speed at
PSP are in good agreement with the independent estimate
based on the measured speed at PSP (315 km s−1), showing the
robustness of the correlation analysis.

The bottom panels of Figure 1 show side (left panel) and top
(right panel) views of the ecliptic plane during the PSP–Solo
line-up, when the two spacecraft had a radial separation of
0.9 au, with PSP approaching perihelion close to 0.1 au, i.e.,
20 Re, and SolO orbiting at a radial distance of about 1 au.

Unfortunately, during the radial alignment, plasma measure-
ments from SolO were unavailable, thus preventing checks of the
solar wind speed at SolO. In order to address this shortcoming, the
DSCOVR speed data were time-shifted by about+ 9.3 days
(which accounts for the solar rotation and the different longitude
of SolO and DSCOVR). Despite the approximate approach, the
resulting expected speed at SolO during the radial alignment is

about 324 km s−1, only a slight increase with respect to that
observed at PSP, confirming the quality of the PSP–SolO radial
alignment identification.
Finally, in order to check whether the plasma observed by PSP

and SolO in the selected intervals comes from the same source
region at the Sun (further corroborating the above findings) the
coronal origins of the solar wind observed by PSP on 2020
September 27 and by SolO on 2020 October 2 have been
assessed. Spacecraft positions have been projected onto the source
surface and then down to the height of 1.16 Re, using a Potential
Field Source Surface (PFSS) model (Schrijver & De Rosa 2003),
as displayed in Figure 2. The source surface height has been
adjusted to 2.0 Re, following the magnetic field polarity changes
observed by SolO on 2020 September 27 (left panel of Figure 2).
A detailed description of the solar wind source mapping can be
found in Panasenco et al. (2020). As follows from the comparison
between the panels of Figure 2, during the time periods
corresponding to the radial alignment, PSP (left panel, in blue)
and SolO (right panel, in orange) were connected to the same
equatorial extension of the southern polar coronal hole at 240°–
250° Carrington Longitude. On 2020 September 27 PSP, at

Figure 1. Top panel: cartoon of the encounters of the same plasma parcel with PSP and SolO during their radial alignment. Bottom panels: positions of PSP (red) and
SolO (blue) relative to the Sun (yellow star), in the XZ (left) and XY (right) planes of the heliocentric ecliptic coordinate frame, at the times of the crossing of the same
solar wind plasma. The positions the probes had in the seven days before and after the radial alignment are also shown, as empty and full points of smaller size,
respectively.

3
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not compare with standard turbulence (an identified property of the
quiescent regions; Dudok de Wit et al. 2020), suggesting once
more the poorly developed nature of the turbulent cascade or the
presence of strong superposed Alfvénic fluctuations. The second-
order scaling exponent ξ(2)≡α− 1 confirms the spectral
observation that the magnetic power has a Kolmogorov scaling
for SolO, but shallower scaling for PSP. Similarly, the Hurst
number ( )Y� 1 (Flandrin et al. 2004; Carbone et al. 2018), a
measure of the memory in the time series (Wang et al. 2000), is
much smaller in the PSP interval (mean and standard deviation for
the three components being _ o 0.23 0.05) than for SolO
( � o 0.37 0.04), indicating that the magnetic field at 0.1 au
does not show strong memory, which would be expected of
intermittent turbulent fluctuations.

The statistical analysis of the intervals at PSP and SolO
suggests that the turbulence is evolving during the expansion.
Power spectra, intermittency, and compressibility indicate that
the nonlinear interactions between Alfvén waves may not yet
have had time to fully develop at 0.1 au, where the solar wind
sampled by PSP is still pristine and unaffected by stream–
stream interactions. On the contrary, the same plasma has
considerably evolved at 1 au, where the Alfvénic fluctuations
have become smaller. At SolO, the nonlinear interactions might
have efficiently formed a fully developed spectrum, addition-
ally building up small-scale intermittent structures and long-
term memory. Alternatively, the decrease of the Alfvénic
fluctuations could have exposed the intermittent nature of the
advected coherent structures.

Figure 5. Trace of the magnetic spectral matrix δB2 (top left), magnetic compressibility spectrum C (top right), and flatness � as a function of the spacecraft frequency
(bottom left) for PSP (red) and SolO (blue) radially aligned intervals. Power-law fits are displayed as thick lines, while relative scaling exponents are reported in the
legends. Bottom right: comparison of the scaling exponents ξq of the qth-order structure functions for PSP (red) and SolO (blue) magnetic field RTN components and
magnitude (represented by different symbols as reported in the legend). As a comparison, exponents for velocity fluctuations in the inertial range of hydrodynamic
turbulence (green stars; Benzi et al. 1993) and the classical K41 (q/3) Kolmogorov law (dotted line; Kolmogorov 1941) are also displayed.
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interpreting the PSP results since the flow and magnetic fields in
the interval of interest are highly aligned (bottom panel of
Figure 3), the implication being that advected quasi-2D structures
are essentially invisible (Zank et al. 2020) and hence their
contribution is difficult to assess. It is worth noting that the power
spectrum at SolO exhibits a high-frequency break around 0.2Hz,
which marks the transition from fluid to kinetic scales. According
to previous findings (e.g., Bruno & Trenchi 2014; Telloni et al.
2019a), this break is close to the proton gyrofrequency, thus
suggesting the likely role played by the ion cyclotron resonance
mechanism in the spectral cascade.

The highly Alfvénic nature of PSP data was confirmed by
the smaller compressibility factor C= δ|B|2/δB2 (i.e., the ratio
between the spectra of the magnetic field magnitude and vector
fluctuations; Bavassano et al. 1982a), shown in the top right
panel of Figure 5 and used here as a proxy of Alfvénicity.28

Indeed, bearing in mind that the solar wind consists mainly of a
mixture of propagating noncompressive Alfvénic fluctuations
and compressive magnetic structures advected by the wind, a
low magnetic compressibility clearly indicates a dominance of
Alfvénic over compressive fluctuations and, in turn, a high
Alfvénic content of the solar wind. The turbulent fluctuations
observed by SolO are less Alfvénic, in agreement with the
known general behavior of the Alfvénicity of tending to decay
with increasing distance from the Sun. Such decay could result
from nonlinear interactions (Bruno & Carbone 2013; Zank
et al. 2020), transversal velocity and magnetic field shears
generated by the solar wind expansion (Shi et al. 2021), or
other mechanisms such as parametric decay (e.g., Malara &
Velli 1996; Bruno et al. 2014a). On the other hand, the higher
Alfvénicity at PSP may result in stronger decorrelation between
the interacting magnetic turbulent structures, reducing the
efficiency of the nonlinear cascade (Dobrowolny et al. 1980;
Smith et al. 2009; Marino et al. 2011) and leading to a
shallower power spectrum.

The presence of intermittency (a characteristic feature of
nonlinear turbulence, Anselmet et al. 1984; Frisch 1995; Bruno &
Carbone 2013) was evaluated through the ratio between the fourth
and the squared second-order structure functions, i.e., the flatness

( ) � �% § �% §� B Bf1 4 2 2, where ΔB(t, 1/f ) are increments of

the magnetic field vector across a timescale 1/f ( f is the
frequency). The flatness is typically used to describe deviation
from Gaussian-distributed fluctuations (e.g., Frisch 1995; Dudok
de Wit et al. 2013; Zhao et al. 2020), for which �� 3. This
quantity is shown in the bottom left panel of Figure 5. Both
intervals show a power-law scaling _ C� f in the inertial range
(approximately from ∼3× 10−3 to ∼5× 10−2 Hz), as indicated
by the thick solid lines in the figure. As a reference, in fluid
turbulence β∼ 0.1 (Frisch 1995), while in space plasmas values
between 0.2 and 0.5 have been observed (Sorriso-Valvo et al.
2019; Quijia et al. 2021). The flatness increases slowly at PSP
(β= 0.24± 0.03), indicating poorly developed intermittency, and
more rapidly at SolO, where the large exponent (β= 0.67± 0.06)
suggests an extremely efficient energy cascade (Carbone &
Sorriso-Valvo 2014). This could be also related to the decrease of
the Alfvénic content with distance, allowing the coherent
structures advected by the wind to emerge more clearly and
control the high-order statistics (Zank et al. 2020).
To ensure statistical significance and ergodicity, the same

quantities were also estimated in extended intervals of 2.17 hr
for PSP (2020 September 27 03:05–05:15) and 4 hr for SolO
(2020 October 1 21:20–2020 October 2 01:20). It is worth
noting that the extended intervals also originated at the same
solar source (though not strictly corresponding to the same
plasma parcel), and the in situ magnetic field characteristics
remained approximately stationary. Such a choice also
accounts for a±5 km s−1 uncertainty in the wind bulk speed
used for the identification of the plasma parcel (see Section 2).
The results obtained in the extended intervals fully confirmed
those obtained using the shorter intervals.
Finally, in order to mitigate possible effects of nonstationarity

and large-scale structures, intermittency was also assessed using
the Hilbert–Huang technique (see, e.g., Huang et al. 1998, 2008;
Carbone et al. 2018; Telloni et al. 2019b) to obtain the scaling
exponents ξq of the qth-order structure functions. These were
estimated for the magnetic field components and magnitude by
resampling and bootstrapping the least-squares fit in the inertial
range of the generalized Hilbert spectra, up to the fifth order
(Carbone et al. 2020). As shown in the bottom right panel of
Figure 5, the deviation from linear order dependence typical of
intermittent turbulent flows is observed at SolO for all the magnetic
field components and magnitude. Values from a standard
experiment of fluid turbulence (Benzi et al. 1993) are shown for
comparison. On the other hand, at PSP the scaling exponents are
too small, in some cases decreasing with order, and in general do

Figure 4. Same as Figure 3, but for 1 day SolO observations centered on the time periods 2020 October 1 21:34–23:04.

28 The Alfvénic character of the fluctuations at PSP is also clearly revealed by
the high degree of correlation between magnetic and velocity field fluctuations,
i.e., high values of cross-helicity, and by the rather good equipartition between
magnetic and kinetic energies, i.e., low values of residual energy (not shown).
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Full-Orbit Simulation
Solving the Newton-Lorentz Equations for many charged (Test) Particles
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and the same rigidity which is conserved in a purely magnetic system. However, their ini-
tial x- and y-coordinates as well as their initial pitch-angle cosine µ0 are different. There
are, in principle, two ways of implementing the turbulent magnetic fields in test-particle
codes:

1. Using discrete grid: In this case we first create and save magnetic field data at each
grid point using Eqs. (10.1)–(10.8) for the whole space and then interpolate for where
the particle is moving. This could be done using a two-dimensional grid for the per-
pendicular directions accompanied with a one-dimensional grid for the parallel direction
or rigorously using a three-dimensional grid. The grid method was used by Mace et al.
(2000), Casse et al. (2002), Qin et al. (2002a,b), Pommois et al. (2007), and Reville et al.
(2008).

2. Creating fields along the trajectory: An alternative is to create fields anew at each time
step. The given initial position allows us to create the field initially which is then seeded
back to the numerical integrator to solve for position which is then seeded to turbulence
creation and so on and so forth. This type of simulations were performed by Giacalone
and Jokipii (1994, 1999), Tautz (2010a, 2010b), Hussein and Shalchi (2014a), and Arendt
and Shalchi (2018).

The second method listed above saves time and uses less memory compared to the grid
method because it generates magnetic fields only where the particle is actually moving, not
on all the provided space as the first method does. On the other hand, when it comes to
visualization, the grid-based system allows to visualize the magnetic field lines across the
whole space and therefore one can see how particles are moving in the vicinity of field lines.
This could be useful in order to develop a deeper understanding of the physics of particle
transport.

In order to solve the second-order Newton-Lorentz equation one can use a fourth-order
Runge-Kutta solver with an adaptive time step option. Although this can be seen as a
standard method in this field, more recently a modified third-order symplectic integration
method was used as an alternative (see Arendt and Shalchi 2018). This ensures energy
conservation and should provide an important improvement of test-particle simulations if
stochastic acceleration due to turbulent electric fields is studied.

In simulations parameters are made to be dimensionless. For instance, all length scales
are divided by the turbulence bendover scale !. Furthermore, we define the dimensionless
running time via T = "t and the dimensionless rigidity vector via R := v/("!). With these
parameters, we can derive the dimensionless Newton-Lorentz equation
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)
(10.12)

where the turbulent field δB(x) is given by Eq. (10.1). The relation between position and
velocity v = dx/dt turns into the dimensionless equation
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!

= R. (10.13)

Special care is required if there is more than one bendover scale !. For two-component
turbulence, we usually choose ! = !‖. Then, however, if the two-dimensional modes are
created via Eq. (10.1), positions are measured in terms of the slab bendover scale !‖. In the
two-dimensional modes we also have kn = k⊥!⊥, therefore, the ratio !⊥/!‖ appears in front
of x · k and this scale ratio controls the transport of particles.
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PARTICLE PUSH IN MAGNETIC FIELD (BORIS METHOD)

Posted on July 11th, 2011
Previous Article :: Next Article

In the previous article, we discussed how to integrate charged particle velocity in the presence of electric field. We now include the magnetic component. As you already know, magnetic field causes charged
particles to rotate about the field line. This component is thus often called v×B (or v cross B) rotation.

SIMPLE IMPLEMENTATION FOR E=0, FORWARD DIFFERENCE
First let’s consider a case without any electric field. The governing equation for velocity is then  (here we are using bold typeface for vector quantities). A simple implementation of the integrator
for 2D case with a magnetic field in the k direction appears to be:

/*grab magnetic field at current position*/ 
B=EvalB(x); 
 
/*get new velocity at n+1*/ 
v2[0] = v[0] + q/m*B*v[1]*dt; 
v2[1] = v[1] - q/m*B*v[0]*dt; 
 
/*update position*/ 
x2[0] = x[0] + v2[0]*dt; 
x2[1] = x[1] + v2[1]*dt; 
 
/*push down*/ 
v[0]=v2[0]; 
v[1]=v2[1]; 

Here velocity is assumed to exist at half times in the spirit of the leapfrog scheme (i.e. v = v[n-1/2] and v2 = v[n+1/2]). If you implement this method (as done in UpdateVelocityForward in the attached code), you’ll see
right away that it doesn’t work. As shown in Figure 1 below, the result is quite similar to what happened earlier in the case of forward difference integrator for the B=0 case. The particle keeps gaining energy, and
instead of completing closed circles around the guiding center, it is continuously spiraling away.

Figure 1. Incorrect result obtained with the forward integration of vxB rotation. The particle is gaining numerical energy, as shown by its orbit spiraling away. The analytical result is a closed circular orbit at the Larmor
radius, which is shown by the solid blue line.
LORENTZ INTEGRATOR 1: TAJIMA’S IMPLICIT METHOD
Getting the right solution requires taking approach similar to what was done previously for the electrostatic case. Instead of updating the velocity from time “n-1/2” to “n+1/2” using the velocity at “n-1/2”, we should
use the average velocity at time “n”. This modifies our Lorentz force integrator to

This expression can be rewritten in matrix notation as

where I is the identity matrix, R is the unit rotation matrix given by

and ε is the scaling factor, . Unfortunately, this equation is implicit, and solving it requires performing a matrix inversion. The solution is given by

with the matrix inverse given by Tajima as

This method is implemented in the attached Java integrator as UpdateVelocityTajimaImplicit. As you can see in Figure 2 below, it indeed works. Not only is the energy conserved, but the computed Larmor
radius is also right. We used 0.01T for the magnetic strength, the particle is an electron, and has initial tangential velocity of 100,000m/s. The Larmor radius, .

Figure 2. Result obtained with the implicit method from Tajima. This time, the particle trajectory is integrated correctly, and the energy is conserved.
Unfortunately, as you can see, this method is rather complicated, and involves a significant amount of calculation. At millions of particles per simulation, these calculations quickly add up into slow code
performance…

LORENTZ INTEGRATOR 2: TAJIMA’S EXPLICIT METHOD
Tajima introduced a method that can be used if a small enough time step is selected such that ε<<1. In that case . By substituting and eliminating the quadratic term, we obtain

But as shown in Figure 3, this method is also incorrect for time steps practical to kinetic plasma simulations. This can be clearly seen by looking at the equation. In the absence of electric field, this integrator is
identical to the original forward difference.

Figure 3. Result obtained with the explicit method from Tajima. The result is again incorrect.
LORENTZ INTEGRATOR 3: BORIS METHOD
So are we stuck using the expensive implicit method? No, not quite. In 1970, Boris described an elegant alternative, which is now commonly known as the Boris Method. Boris method is the de facto standard for
particle pushing in plasma simulation codes. Again, we are solving

Boris noticed that we can eliminate the electric field by defining

When these definitions are substituted into the original equation, we obtain pure rotation

Boris next utilized some basic geometry (see Figure 4-4a in Birdsall, p. 62) to derive the expression for performing the rotation. The first step is to find the vector bisecting the angle formed by the pre- and the (to be
yet computed) post-rotation velocity. The angle through which the velocity will rotate in the given time step is, from geometry, . The vector form of this is .
The bisector vector (v prime) is then

This “v prime” vector is perpendicular to both the magnetic field (the vector “t”) and the vector from “v minus” to “v plus”, the post-rotation velocity we are looking for. This connecting vector is again obtained from
geometry as the cross product of “v prime” and a new vector “s”. This vector “s” is just a version of the rotation vector “t” scaled to satisfy the requirement that magnitude of velocity remains constant in the rotation.
Mathematically speaking

where

To implement the Boris method, first obtain “v minus” by adding half acceleration to the initial velocity, per Equation 1. Then perform the full rotation according to Equations 3 and 4. Finally, add another half
acceleration, as given by Equation 2.

Figure 4. Result obtained using the Boris method. Energy is conserved.
IMPLEMENTATION
All four methods described here are implemented in the attached Java program, ParticleIntegrator.java (Netbeans Workspace, zip). Java is actually a great language for scientific computing. Although in the past
Java used to be much slower than C/C++, this is no longer case. The syntax is very similar to C++, but Java comes bundled with a large standard library which makes it very easy to do things such as add
multithreading to your code. All this is possible in C/C++, but requires downloading additional libraries, compiling them for your architecture, and making sure they play well with your makefiles/workspace. None of
this is necessary in Java, as it already comes preinstalled.

The program implements a particle push integrator than advances a single particle in 3D electromagnetic fields for a specified number of time steps. The fields at the particle velocity are evaluated by calling
functions EvalE and EvalB. Currently these return constant values, but feel free to experiment to make the fields variable. A function called UpdateVelocity acts as a wrapper that calls the appropriate
implementation. The Boris method is coded up in the attached Java program in the function UpdateVelocityBoris. To switch between the different methods, simply uncomment the appropriate call on line 72 in
function UpdateVelocity. To switch from an electron to a heavier ion, simply modify the charge and mass in the Particle class definition on line 84.

ATTACHMENTS:
1. ParticleIntegrator.java (source code for plasma particle integrator)
2. ParticleIntegrator.zip (NetBeans workspace, zipped file)
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1. Lubos
July 12, 2011 at 4:26 pm
Feel free to leave a comment if you have any questions or something isn’t clear. Thank you for stopping by!

Reply

2. Matthias
July 13, 2011 at 6:45 am
Nice article, I didn’t know about Tajima although my Boris implementation was in fact Tajima. It wasn’t too slow since the difference in needed floating point operations isn’t that serious for a 2D case.
So implicit Tajima and Boris produce the same trajectory (assuming infinite precision). Rearranging and simplyfing the Tajima expression for “v plus” gives Boris, so Boris could be derived without geometric
interpretation as a rotation, but with just reducing the number of floating point operations in mind.

Reply
Matthias

July 13, 2011 at 6:55 am
Correction: What I said about the relation of Tajima and Boris is for the case where no electric field is present. I am not sure for the general case.

Reply
Lubos

July 13, 2011 at 6:13 pm
That definitely makes sense. Thanks for pointing this out! I sort of figured that in the end the implicit and the multi-step Boris method should be the same but I didn’t really feel the motivation to prove it. I also
implemented the implicit solver the way it’s written in Tajima’s book, with actual matrix inversion and matrix multiplication. I bet that bunch of terms end up cancelling out in the end. But the way it is written, this
implicit method took about 2 seconds for some 10 million time steps, while the Boris method took about about 1.2. So roughly 60% slower or so (with the non-optimized versions)…

Reply
3. John
August 3, 2011 at 4:52 am
I converted this example to javascript to run in a webpage. You can see the results here.

http://dl.dropbox.com/u/5095342/PIC/pic.html

This site uses html5 so you will need a current version of your browser to see algorithm runtimes. IE9, firefox 4 or current google chrome web browser.

Reply
lubos

August 3, 2011 at 6:57 am
Thanks John! It would be great if you could add support for graphing the results. But I think this would require running the code as an applet, or alternatively server-side.

Reply
John

August 3, 2011 at 10:27 am
I updated the page so that it now displays a graph of the output. It uses the html5 “canvas” element to display the graph.

Reply
lubos

August 3, 2011 at 11:26 am
Nice! Thank you for doing this, John. I had no idea it was so easy to draw using Javascript (I am definitely not up to date when it comes to HTML5). I’ll try to do something similar for future posts to give visitors
something to play with.

Reply
4. Phil
October 24, 2011 at 2:51 am
Hey there, nice article!
Quick question about your reference to the Boris method – you have it as MATT-152 whereas a quick web search found mostly references to MATT-769 – I cant seem to get any text from either report (maybe im
looking in the wrong place) could you confirm which report it is?

Reply

5. Elias
April 25, 2012 at 1:57 am
Hi, thanks for all these nice tutorials. I have never used C++ or Java, but I am starting now, so the tutorials here are useful. One question is about vectorization – is that also a feature that can speed up things a bit. E.g.
in other high-level languages I am using, to avoid loops its enough to write:

t = part.q/part.m*B*0.5*dt

instead of placing the calculation of each vector element in a loop, as you have in the available code. I use this option as much as possible, also to make calculations for many particles simultaneously. Is that possible
in Java or C?

Reply
Lubos

April 25, 2012 at 4:05 am
HI Elias, not that I know of, unless you start dealing with extensions such as CUDA. The reason why vector operations are so much faster in Matlab is that Matlab is an interpretive language that doesn’t precompile
the code. As Matlab chugs through your code, it first translates each instruction from its syntax to the machine language before executing it. This happens even for code inside loops. So if you have a code such as

for i=1:1000
   sum = sum + data[i];
end

the instruction inside the loop (sum = sum + data[i]) ends up getting compiled 1000 times. This is a huge waste of computational resources. A vector statement results in only a single compilation. Java and C/C++
are both precompiled languages – C/C++ codes get translated to the machine language directly, while Java is turned into a byte code – and as such you don’t have to worry about issues like this. Unless you are
actually using a vector computer, a single line syntax will not gain you much except for perhaps a slicker looking code. The way to get an actual speed up is by performing the calculation on a the graphics card (GPU)
using language extensions such as CUDA. Graphics cards are in reality highly optimized vector computers that can perform operations on multiple components of an array concurrently. But that’s a topic for a future
discussion…

Reply
6. Rushat
June 12, 2012 at 7:46 pm
Hi there,

I am also running similar particle codes. Do you know of how much integration time is needed for such trajectories or it is just upto the user? In other words, does it need to be some gyro periods long? Also, with
regards to non-guiding center motion, such integration times could be any number…..how does one determine such numbers for these nonlinear problems (spatial dependence in B)?

Thanks

Reply
Lubos

June 13, 2012 at 5:57 am
Hi Rushat, are you talking about the size of the simulation time step? If so, in a fully-kinetic simulation, where you simulate electrons and ions as particles, you will in general have two frequencies to consider: the
plasma frequency and the cyclotron frequency. You need to set you simulation such that you resolve the higher of these. Also, in order for this Boris integration scheme to work, you need to take multiple steps about
the orbit. I did some parametric studies as part of my dissertation work, and found (if I remember right) that the error started being somewhat acceptable with 15 steps per orbit, and reduced to below 0.1% with 75
steps per orbit. This error took into account both the displacement of the guiding center and the correct Larmor radius. In my simulation I ended up setting the time step based on the highest value of the magnetic
field in the simulation, since the cyclotron frequency scales linearly with the field strength.

Reply

7. Rushat
July 17, 2012 at 2:55 pm
Hey Lubos,

Thanks for the reply. I guess I did not explain the problem correctly. The thing is I am not doing any PIC type simulation. I am just running for trajectories of particles in a given magnetic field. I am not solving it self-
consistently. So, I am wondering if for my problem, what would be a sufficient ending time (normalized to gyro-frequency) for eg for protons……200*gyro-freq or 200*gyro-freq.

Thanks

Reply
8. Rushat
July 17, 2012 at 2:56 pm
I meant 200*gyro-freq or 2000*gyro-freq as the ending time??

Reply
Lubos

July 17, 2012 at 3:58 pm
I guess I am still confused 

!

There is no “defined” ending time. This depends on your simulation, on what exactly you are simulating. If for instance you want to simulate one second of real time, you will need enough time steps to capture this
(n_it = 1 sec / delta_t). On the other hand, PIC simulations are typically run until steady state which is defined by some parameter no longer changing. For a plume simulation, where you continuously inject particles
from the source, the steady state is reached once the total particle count no longer changes. But if you preload the sim with a fixed number of particles and simply let these evolve, you will want to run the simulation
until something else (velocity, temperature, mean position?) stops changing significantly.

Reply
9. Jason
August 6, 2012 at 5:53 am
Hi,

Nice tutorial, thanks. Do you know of a similarly well-written example of a relativistic Boris pusher? Is is as simple as using the gamma factor at the ‘old’ time step, or does something more clever have to be done?

Thanks

Reply
Lubos

August 30, 2012 at 12:16 pm
Hi Jason, no and sorry, I am not familiar with relativistic PIC codes. All the work I have ever done was with velocities < 1e7 m/s.

Reply

charlson
December 20, 2012 at 2:47 pm
look in the Birdsall reference.

in short, yes you are correct, it is just a matter of applying gamma but it must be done in a properly centered fashion.

Reply
Lubos

December 21, 2012 at 4:05 pm
Charlson, do you have an example you could share?

Reply
10. Aleksandar
September 5, 2013 at 4:02 am
For relativistic PIC code, where do I need to apply gamma?

Reply
11. mahsoun
November 19, 2013 at 2:45 am
Hi. I am trying to simulate particle movement in presence of a magnetic filed, But, I don’t know how to find current values. Of course, I have used the relation current=rho*velocity, But , I think this is not true. Can you
help me to obviate my problem? (I am sorry for my poor English)

Reply

12. JC.Zhang
November 6, 2014 at 10:25 pm
Hi, very helpful article you write. I download your java program and run it in NetBeans. I modified some pramaters and it worked. However I just got the larmor radius as results. How can I got the full results like
positions in every time steps?

Reply
Lubos

November 7, 2014 at 8:03 pm
There should be a file called “trace.txt” that contains these in the directory from where you ran the program.

Reply
13. kcd
October 2, 2015 at 9:49 pm
Here is my attempt to put it back as a matrix-vector product like in part 1, but derived by Boris method.

http://braingab.blogspot.com/2015/10/particle-pushing-with-boris-method.html

Reply

14. Dimitris
December 19, 2016 at 11:34 pm
Hello,

in the Boris method, in the denominator of the s vector, the s^2 is the (sx^2+sy^2+sz^2) or the si^2 where i=x,y,z for each vector component?

Reply
Lubos

December 21, 2016 at 9:36 am
The denominator is (1+t^2) if I am looking at the same equation as you. That “t” is the magnitude of the “t” vector so t^2 is tx^2+ty^2+tz^2.

Reply
15. frank
September 22, 2017 at 8:42 am
Hi Lubos, I have a question. If we consider the vxB part only, is the Boris mover an alternative implementation of the Tajima’s implicit mover? They seem to solve the same original equation to push v_n-1/2 to v_n+1/2.
Also, would they be stable under crazily bad dx or dt, like dt * Omega_ce ~ 1e5?

Reply
16. srie
November 28, 2017 at 12:46 am
how is “s” become “2t/1+t^2”?

Reply

17. SOFIA
July 22, 2019 at 2:59 am
i have question related to boris code. code which i am writing has 3 different normalized values of velocities.now i have to convert it in ms-1.i am unable to find normalization factor with which i multiply it with to
convert it in ms-1. kindly help me

Reply
SOFIA

July 22, 2019 at 3:04 am
in my case i am using the velocity v=(0.1,0.01,0)^T. kindky help me to convert in ms-1.

Reply
18. Maxwell Rosen
September 2, 2020 at 6:36 pm
There is a typo in the equation s=2t/(1+t^2) for Boris’s algorithm. The t in the deonominator should be bolded since it is a vector. From the way it is typed, it looks like one is vec(t) and the other is t like time as in
$\delta t$ you have defined earlier.

Reply
19. Fergus
March 18, 2021 at 1:26 am
This has been a very helpful first introduction into numerical methods.
Thank you!

Reply
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In the literature, often RK methods are used.
We use the Boris Push method for energy conservation:
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PARTICLE PUSH IN MAGNETIC FIELD (BORIS METHOD)

Posted on July 11th, 2011
Previous Article :: Next Article

In the previous article, we discussed how to integrate charged particle velocity in the presence of electric field. We now include the magnetic component. As you already know, magnetic field causes charged
particles to rotate about the field line. This component is thus often called v×B (or v cross B) rotation.

SIMPLE IMPLEMENTATION FOR E=0, FORWARD DIFFERENCE
First let’s consider a case without any electric field. The governing equation for velocity is then  (here we are using bold typeface for vector quantities). A simple implementation of the integrator
for 2D case with a magnetic field in the k direction appears to be:

/*grab magnetic field at current position*/ 
B=EvalB(x); 
 
/*get new velocity at n+1*/ 
v2[0] = v[0] + q/m*B*v[1]*dt; 
v2[1] = v[1] - q/m*B*v[0]*dt; 
 
/*update position*/ 
x2[0] = x[0] + v2[0]*dt; 
x2[1] = x[1] + v2[1]*dt; 
 
/*push down*/ 
v[0]=v2[0]; 
v[1]=v2[1]; 

Here velocity is assumed to exist at half times in the spirit of the leapfrog scheme (i.e. v = v[n-1/2] and v2 = v[n+1/2]). If you implement this method (as done in UpdateVelocityForward in the attached code), you’ll see
right away that it doesn’t work. As shown in Figure 1 below, the result is quite similar to what happened earlier in the case of forward difference integrator for the B=0 case. The particle keeps gaining energy, and
instead of completing closed circles around the guiding center, it is continuously spiraling away.

Figure 1. Incorrect result obtained with the forward integration of vxB rotation. The particle is gaining numerical energy, as shown by its orbit spiraling away. The analytical result is a closed circular orbit at the Larmor
radius, which is shown by the solid blue line.
LORENTZ INTEGRATOR 1: TAJIMA’S IMPLICIT METHOD
Getting the right solution requires taking approach similar to what was done previously for the electrostatic case. Instead of updating the velocity from time “n-1/2” to “n+1/2” using the velocity at “n-1/2”, we should
use the average velocity at time “n”. This modifies our Lorentz force integrator to

This expression can be rewritten in matrix notation as

where I is the identity matrix, R is the unit rotation matrix given by

and ε is the scaling factor, . Unfortunately, this equation is implicit, and solving it requires performing a matrix inversion. The solution is given by

with the matrix inverse given by Tajima as

This method is implemented in the attached Java integrator as UpdateVelocityTajimaImplicit. As you can see in Figure 2 below, it indeed works. Not only is the energy conserved, but the computed Larmor
radius is also right. We used 0.01T for the magnetic strength, the particle is an electron, and has initial tangential velocity of 100,000m/s. The Larmor radius, .

Figure 2. Result obtained with the implicit method from Tajima. This time, the particle trajectory is integrated correctly, and the energy is conserved.
Unfortunately, as you can see, this method is rather complicated, and involves a significant amount of calculation. At millions of particles per simulation, these calculations quickly add up into slow code
performance…

LORENTZ INTEGRATOR 2: TAJIMA’S EXPLICIT METHOD
Tajima introduced a method that can be used if a small enough time step is selected such that ε<<1. In that case . By substituting and eliminating the quadratic term, we obtain

But as shown in Figure 3, this method is also incorrect for time steps practical to kinetic plasma simulations. This can be clearly seen by looking at the equation. In the absence of electric field, this integrator is
identical to the original forward difference.

Figure 3. Result obtained with the explicit method from Tajima. The result is again incorrect.
LORENTZ INTEGRATOR 3: BORIS METHOD
So are we stuck using the expensive implicit method? No, not quite. In 1970, Boris described an elegant alternative, which is now commonly known as the Boris Method. Boris method is the de facto standard for
particle pushing in plasma simulation codes. Again, we are solving

Boris noticed that we can eliminate the electric field by defining

When these definitions are substituted into the original equation, we obtain pure rotation

Boris next utilized some basic geometry (see Figure 4-4a in Birdsall, p. 62) to derive the expression for performing the rotation. The first step is to find the vector bisecting the angle formed by the pre- and the (to be
yet computed) post-rotation velocity. The angle through which the velocity will rotate in the given time step is, from geometry, . The vector form of this is .
The bisector vector (v prime) is then

This “v prime” vector is perpendicular to both the magnetic field (the vector “t”) and the vector from “v minus” to “v plus”, the post-rotation velocity we are looking for. This connecting vector is again obtained from
geometry as the cross product of “v prime” and a new vector “s”. This vector “s” is just a version of the rotation vector “t” scaled to satisfy the requirement that magnitude of velocity remains constant in the rotation.
Mathematically speaking

where

To implement the Boris method, first obtain “v minus” by adding half acceleration to the initial velocity, per Equation 1. Then perform the full rotation according to Equations 3 and 4. Finally, add another half
acceleration, as given by Equation 2.

Figure 4. Result obtained using the Boris method. Energy is conserved.
IMPLEMENTATION
All four methods described here are implemented in the attached Java program, ParticleIntegrator.java (Netbeans Workspace, zip). Java is actually a great language for scientific computing. Although in the past
Java used to be much slower than C/C++, this is no longer case. The syntax is very similar to C++, but Java comes bundled with a large standard library which makes it very easy to do things such as add
multithreading to your code. All this is possible in C/C++, but requires downloading additional libraries, compiling them for your architecture, and making sure they play well with your makefiles/workspace. None of
this is necessary in Java, as it already comes preinstalled.

The program implements a particle push integrator than advances a single particle in 3D electromagnetic fields for a specified number of time steps. The fields at the particle velocity are evaluated by calling
functions EvalE and EvalB. Currently these return constant values, but feel free to experiment to make the fields variable. A function called UpdateVelocity acts as a wrapper that calls the appropriate
implementation. The Boris method is coded up in the attached Java program in the function UpdateVelocityBoris. To switch between the different methods, simply uncomment the appropriate call on line 72 in
function UpdateVelocity. To switch from an electron to a heavier ion, simply modify the charge and mass in the Particle class definition on line 84.

ATTACHMENTS:
1. ParticleIntegrator.java (source code for plasma particle integrator)
2. ParticleIntegrator.zip (NetBeans workspace, zipped file)

REFERENCES:
1. Boris, J.P., The acceleration calculation from a scalar potential, Plasma Physics Laboratory, Princeton Univeristy, MATT-152, March 1970
2. Boris, J.P., Relativistic plasma simulation-optimization of a hybrid code, Proceeding of Fourth Conference on Numerical Simulations of Plasmas, November 1970

3. Birdsall, C.K., and Langdon, A.B., “Plasma Physics Via Computer Simulations“, Institute of Physics Publishing, Bristol and Philadelphia, 1991
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33 COMMENTS TO “PARTICLE PUSH IN MAGNETIC FIELD (BORIS METHOD)”
1. Lubos
July 12, 2011 at 4:26 pm
Feel free to leave a comment if you have any questions or something isn’t clear. Thank you for stopping by!

Reply

2. Matthias
July 13, 2011 at 6:45 am
Nice article, I didn’t know about Tajima although my Boris implementation was in fact Tajima. It wasn’t too slow since the difference in needed floating point operations isn’t that serious for a 2D case.
So implicit Tajima and Boris produce the same trajectory (assuming infinite precision). Rearranging and simplyfing the Tajima expression for “v plus” gives Boris, so Boris could be derived without geometric
interpretation as a rotation, but with just reducing the number of floating point operations in mind.

Reply
Matthias

July 13, 2011 at 6:55 am
Correction: What I said about the relation of Tajima and Boris is for the case where no electric field is present. I am not sure for the general case.

Reply
Lubos

July 13, 2011 at 6:13 pm
That definitely makes sense. Thanks for pointing this out! I sort of figured that in the end the implicit and the multi-step Boris method should be the same but I didn’t really feel the motivation to prove it. I also
implemented the implicit solver the way it’s written in Tajima’s book, with actual matrix inversion and matrix multiplication. I bet that bunch of terms end up cancelling out in the end. But the way it is written, this
implicit method took about 2 seconds for some 10 million time steps, while the Boris method took about about 1.2. So roughly 60% slower or so (with the non-optimized versions)…

Reply
3. John
August 3, 2011 at 4:52 am
I converted this example to javascript to run in a webpage. You can see the results here.

http://dl.dropbox.com/u/5095342/PIC/pic.html

This site uses html5 so you will need a current version of your browser to see algorithm runtimes. IE9, firefox 4 or current google chrome web browser.

Reply
lubos

August 3, 2011 at 6:57 am
Thanks John! It would be great if you could add support for graphing the results. But I think this would require running the code as an applet, or alternatively server-side.

Reply
John

August 3, 2011 at 10:27 am
I updated the page so that it now displays a graph of the output. It uses the html5 “canvas” element to display the graph.

Reply
lubos

August 3, 2011 at 11:26 am
Nice! Thank you for doing this, John. I had no idea it was so easy to draw using Javascript (I am definitely not up to date when it comes to HTML5). I’ll try to do something similar for future posts to give visitors
something to play with.

Reply
4. Phil
October 24, 2011 at 2:51 am
Hey there, nice article!
Quick question about your reference to the Boris method – you have it as MATT-152 whereas a quick web search found mostly references to MATT-769 – I cant seem to get any text from either report (maybe im
looking in the wrong place) could you confirm which report it is?

Reply

5. Elias
April 25, 2012 at 1:57 am
Hi, thanks for all these nice tutorials. I have never used C++ or Java, but I am starting now, so the tutorials here are useful. One question is about vectorization – is that also a feature that can speed up things a bit. E.g.
in other high-level languages I am using, to avoid loops its enough to write:

t = part.q/part.m*B*0.5*dt

instead of placing the calculation of each vector element in a loop, as you have in the available code. I use this option as much as possible, also to make calculations for many particles simultaneously. Is that possible
in Java or C?

Reply
Lubos

April 25, 2012 at 4:05 am
HI Elias, not that I know of, unless you start dealing with extensions such as CUDA. The reason why vector operations are so much faster in Matlab is that Matlab is an interpretive language that doesn’t precompile
the code. As Matlab chugs through your code, it first translates each instruction from its syntax to the machine language before executing it. This happens even for code inside loops. So if you have a code such as

for i=1:1000
   sum = sum + data[i];
end

the instruction inside the loop (sum = sum + data[i]) ends up getting compiled 1000 times. This is a huge waste of computational resources. A vector statement results in only a single compilation. Java and C/C++
are both precompiled languages – C/C++ codes get translated to the machine language directly, while Java is turned into a byte code – and as such you don’t have to worry about issues like this. Unless you are
actually using a vector computer, a single line syntax will not gain you much except for perhaps a slicker looking code. The way to get an actual speed up is by performing the calculation on a the graphics card (GPU)
using language extensions such as CUDA. Graphics cards are in reality highly optimized vector computers that can perform operations on multiple components of an array concurrently. But that’s a topic for a future
discussion…

Reply
6. Rushat
June 12, 2012 at 7:46 pm
Hi there,

I am also running similar particle codes. Do you know of how much integration time is needed for such trajectories or it is just upto the user? In other words, does it need to be some gyro periods long? Also, with
regards to non-guiding center motion, such integration times could be any number…..how does one determine such numbers for these nonlinear problems (spatial dependence in B)?

Thanks

Reply
Lubos

June 13, 2012 at 5:57 am
Hi Rushat, are you talking about the size of the simulation time step? If so, in a fully-kinetic simulation, where you simulate electrons and ions as particles, you will in general have two frequencies to consider: the
plasma frequency and the cyclotron frequency. You need to set you simulation such that you resolve the higher of these. Also, in order for this Boris integration scheme to work, you need to take multiple steps about
the orbit. I did some parametric studies as part of my dissertation work, and found (if I remember right) that the error started being somewhat acceptable with 15 steps per orbit, and reduced to below 0.1% with 75
steps per orbit. This error took into account both the displacement of the guiding center and the correct Larmor radius. In my simulation I ended up setting the time step based on the highest value of the magnetic
field in the simulation, since the cyclotron frequency scales linearly with the field strength.

Reply

7. Rushat
July 17, 2012 at 2:55 pm
Hey Lubos,

Thanks for the reply. I guess I did not explain the problem correctly. The thing is I am not doing any PIC type simulation. I am just running for trajectories of particles in a given magnetic field. I am not solving it self-
consistently. So, I am wondering if for my problem, what would be a sufficient ending time (normalized to gyro-frequency) for eg for protons……200*gyro-freq or 200*gyro-freq.

Thanks

Reply
8. Rushat
July 17, 2012 at 2:56 pm
I meant 200*gyro-freq or 2000*gyro-freq as the ending time??

Reply
Lubos

July 17, 2012 at 3:58 pm
I guess I am still confused 

!

There is no “defined” ending time. This depends on your simulation, on what exactly you are simulating. If for instance you want to simulate one second of real time, you will need enough time steps to capture this
(n_it = 1 sec / delta_t). On the other hand, PIC simulations are typically run until steady state which is defined by some parameter no longer changing. For a plume simulation, where you continuously inject particles
from the source, the steady state is reached once the total particle count no longer changes. But if you preload the sim with a fixed number of particles and simply let these evolve, you will want to run the simulation
until something else (velocity, temperature, mean position?) stops changing significantly.

Reply
9. Jason
August 6, 2012 at 5:53 am
Hi,

Nice tutorial, thanks. Do you know of a similarly well-written example of a relativistic Boris pusher? Is is as simple as using the gamma factor at the ‘old’ time step, or does something more clever have to be done?

Thanks

Reply
Lubos

August 30, 2012 at 12:16 pm
Hi Jason, no and sorry, I am not familiar with relativistic PIC codes. All the work I have ever done was with velocities < 1e7 m/s.

Reply

charlson
December 20, 2012 at 2:47 pm
look in the Birdsall reference.

in short, yes you are correct, it is just a matter of applying gamma but it must be done in a properly centered fashion.

Reply
Lubos

December 21, 2012 at 4:05 pm
Charlson, do you have an example you could share?

Reply
10. Aleksandar
September 5, 2013 at 4:02 am
For relativistic PIC code, where do I need to apply gamma?

Reply
11. mahsoun
November 19, 2013 at 2:45 am
Hi. I am trying to simulate particle movement in presence of a magnetic filed, But, I don’t know how to find current values. Of course, I have used the relation current=rho*velocity, But , I think this is not true. Can you
help me to obviate my problem? (I am sorry for my poor English)

Reply

12. JC.Zhang
November 6, 2014 at 10:25 pm
Hi, very helpful article you write. I download your java program and run it in NetBeans. I modified some pramaters and it worked. However I just got the larmor radius as results. How can I got the full results like
positions in every time steps?

Reply
Lubos

November 7, 2014 at 8:03 pm
There should be a file called “trace.txt” that contains these in the directory from where you ran the program.

Reply
13. kcd
October 2, 2015 at 9:49 pm
Here is my attempt to put it back as a matrix-vector product like in part 1, but derived by Boris method.

http://braingab.blogspot.com/2015/10/particle-pushing-with-boris-method.html

Reply

14. Dimitris
December 19, 2016 at 11:34 pm
Hello,

in the Boris method, in the denominator of the s vector, the s^2 is the (sx^2+sy^2+sz^2) or the si^2 where i=x,y,z for each vector component?

Reply
Lubos

December 21, 2016 at 9:36 am
The denominator is (1+t^2) if I am looking at the same equation as you. That “t” is the magnitude of the “t” vector so t^2 is tx^2+ty^2+tz^2.

Reply
15. frank
September 22, 2017 at 8:42 am
Hi Lubos, I have a question. If we consider the vxB part only, is the Boris mover an alternative implementation of the Tajima’s implicit mover? They seem to solve the same original equation to push v_n-1/2 to v_n+1/2.
Also, would they be stable under crazily bad dx or dt, like dt * Omega_ce ~ 1e5?

Reply
16. srie
November 28, 2017 at 12:46 am
how is “s” become “2t/1+t^2”?

Reply

17. SOFIA
July 22, 2019 at 2:59 am
i have question related to boris code. code which i am writing has 3 different normalized values of velocities.now i have to convert it in ms-1.i am unable to find normalization factor with which i multiply it with to
convert it in ms-1. kindly help me

Reply
SOFIA

July 22, 2019 at 3:04 am
in my case i am using the velocity v=(0.1,0.01,0)^T. kindky help me to convert in ms-1.

Reply
18. Maxwell Rosen
September 2, 2020 at 6:36 pm
There is a typo in the equation s=2t/(1+t^2) for Boris’s algorithm. The t in the deonominator should be bolded since it is a vector. From the way it is typed, it looks like one is vec(t) and the other is t like time as in
$\delta t$ you have defined earlier.
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19. Fergus
March 18, 2021 at 1:26 am
This has been a very helpful first introduction into numerical methods.
Thank you!
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PARTICLE PUSH IN MAGNETIC FIELD (BORIS METHOD)

Posted on July 11th, 2011
Previous Article :: Next Article

In the previous article, we discussed how to integrate charged particle velocity in the presence of electric field. We now include the magnetic component. As you already know, magnetic field causes charged
particles to rotate about the field line. This component is thus often called v×B (or v cross B) rotation.

SIMPLE IMPLEMENTATION FOR E=0, FORWARD DIFFERENCE
First let’s consider a case without any electric field. The governing equation for velocity is then  (here we are using bold typeface for vector quantities). A simple implementation of the integrator
for 2D case with a magnetic field in the k direction appears to be:

/*grab magnetic field at current position*/ 
B=EvalB(x); 
 
/*get new velocity at n+1*/ 
v2[0] = v[0] + q/m*B*v[1]*dt; 
v2[1] = v[1] - q/m*B*v[0]*dt; 
 
/*update position*/ 
x2[0] = x[0] + v2[0]*dt; 
x2[1] = x[1] + v2[1]*dt; 
 
/*push down*/ 
v[0]=v2[0]; 
v[1]=v2[1]; 

Here velocity is assumed to exist at half times in the spirit of the leapfrog scheme (i.e. v = v[n-1/2] and v2 = v[n+1/2]). If you implement this method (as done in UpdateVelocityForward in the attached code), you’ll see
right away that it doesn’t work. As shown in Figure 1 below, the result is quite similar to what happened earlier in the case of forward difference integrator for the B=0 case. The particle keeps gaining energy, and
instead of completing closed circles around the guiding center, it is continuously spiraling away.

Figure 1. Incorrect result obtained with the forward integration of vxB rotation. The particle is gaining numerical energy, as shown by its orbit spiraling away. The analytical result is a closed circular orbit at the Larmor
radius, which is shown by the solid blue line.
LORENTZ INTEGRATOR 1: TAJIMA’S IMPLICIT METHOD
Getting the right solution requires taking approach similar to what was done previously for the electrostatic case. Instead of updating the velocity from time “n-1/2” to “n+1/2” using the velocity at “n-1/2”, we should
use the average velocity at time “n”. This modifies our Lorentz force integrator to

This expression can be rewritten in matrix notation as

where I is the identity matrix, R is the unit rotation matrix given by

and ε is the scaling factor, . Unfortunately, this equation is implicit, and solving it requires performing a matrix inversion. The solution is given by

with the matrix inverse given by Tajima as

This method is implemented in the attached Java integrator as UpdateVelocityTajimaImplicit. As you can see in Figure 2 below, it indeed works. Not only is the energy conserved, but the computed Larmor
radius is also right. We used 0.01T for the magnetic strength, the particle is an electron, and has initial tangential velocity of 100,000m/s. The Larmor radius, .

Figure 2. Result obtained with the implicit method from Tajima. This time, the particle trajectory is integrated correctly, and the energy is conserved.
Unfortunately, as you can see, this method is rather complicated, and involves a significant amount of calculation. At millions of particles per simulation, these calculations quickly add up into slow code
performance…

LORENTZ INTEGRATOR 2: TAJIMA’S EXPLICIT METHOD
Tajima introduced a method that can be used if a small enough time step is selected such that ε<<1. In that case . By substituting and eliminating the quadratic term, we obtain

But as shown in Figure 3, this method is also incorrect for time steps practical to kinetic plasma simulations. This can be clearly seen by looking at the equation. In the absence of electric field, this integrator is
identical to the original forward difference.

Figure 3. Result obtained with the explicit method from Tajima. The result is again incorrect.
LORENTZ INTEGRATOR 3: BORIS METHOD
So are we stuck using the expensive implicit method? No, not quite. In 1970, Boris described an elegant alternative, which is now commonly known as the Boris Method. Boris method is the de facto standard for
particle pushing in plasma simulation codes. Again, we are solving

Boris noticed that we can eliminate the electric field by defining

When these definitions are substituted into the original equation, we obtain pure rotation

Boris next utilized some basic geometry (see Figure 4-4a in Birdsall, p. 62) to derive the expression for performing the rotation. The first step is to find the vector bisecting the angle formed by the pre- and the (to be
yet computed) post-rotation velocity. The angle through which the velocity will rotate in the given time step is, from geometry, . The vector form of this is .
The bisector vector (v prime) is then

This “v prime” vector is perpendicular to both the magnetic field (the vector “t”) and the vector from “v minus” to “v plus”, the post-rotation velocity we are looking for. This connecting vector is again obtained from
geometry as the cross product of “v prime” and a new vector “s”. This vector “s” is just a version of the rotation vector “t” scaled to satisfy the requirement that magnitude of velocity remains constant in the rotation.
Mathematically speaking

where

To implement the Boris method, first obtain “v minus” by adding half acceleration to the initial velocity, per Equation 1. Then perform the full rotation according to Equations 3 and 4. Finally, add another half
acceleration, as given by Equation 2.

Figure 4. Result obtained using the Boris method. Energy is conserved.
IMPLEMENTATION
All four methods described here are implemented in the attached Java program, ParticleIntegrator.java (Netbeans Workspace, zip). Java is actually a great language for scientific computing. Although in the past
Java used to be much slower than C/C++, this is no longer case. The syntax is very similar to C++, but Java comes bundled with a large standard library which makes it very easy to do things such as add
multithreading to your code. All this is possible in C/C++, but requires downloading additional libraries, compiling them for your architecture, and making sure they play well with your makefiles/workspace. None of
this is necessary in Java, as it already comes preinstalled.

The program implements a particle push integrator than advances a single particle in 3D electromagnetic fields for a specified number of time steps. The fields at the particle velocity are evaluated by calling
functions EvalE and EvalB. Currently these return constant values, but feel free to experiment to make the fields variable. A function called UpdateVelocity acts as a wrapper that calls the appropriate
implementation. The Boris method is coded up in the attached Java program in the function UpdateVelocityBoris. To switch between the different methods, simply uncomment the appropriate call on line 72 in
function UpdateVelocity. To switch from an electron to a heavier ion, simply modify the charge and mass in the Particle class definition on line 84.

ATTACHMENTS:
1. ParticleIntegrator.java (source code for plasma particle integrator)
2. ParticleIntegrator.zip (NetBeans workspace, zipped file)

REFERENCES:
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33 COMMENTS TO “PARTICLE PUSH IN MAGNETIC FIELD (BORIS METHOD)”
1. Lubos
July 12, 2011 at 4:26 pm
Feel free to leave a comment if you have any questions or something isn’t clear. Thank you for stopping by!

Reply

2. Matthias
July 13, 2011 at 6:45 am
Nice article, I didn’t know about Tajima although my Boris implementation was in fact Tajima. It wasn’t too slow since the difference in needed floating point operations isn’t that serious for a 2D case.
So implicit Tajima and Boris produce the same trajectory (assuming infinite precision). Rearranging and simplyfing the Tajima expression for “v plus” gives Boris, so Boris could be derived without geometric
interpretation as a rotation, but with just reducing the number of floating point operations in mind.

Reply
Matthias

July 13, 2011 at 6:55 am
Correction: What I said about the relation of Tajima and Boris is for the case where no electric field is present. I am not sure for the general case.

Reply
Lubos

July 13, 2011 at 6:13 pm
That definitely makes sense. Thanks for pointing this out! I sort of figured that in the end the implicit and the multi-step Boris method should be the same but I didn’t really feel the motivation to prove it. I also
implemented the implicit solver the way it’s written in Tajima’s book, with actual matrix inversion and matrix multiplication. I bet that bunch of terms end up cancelling out in the end. But the way it is written, this
implicit method took about 2 seconds for some 10 million time steps, while the Boris method took about about 1.2. So roughly 60% slower or so (with the non-optimized versions)…

Reply
3. John
August 3, 2011 at 4:52 am
I converted this example to javascript to run in a webpage. You can see the results here.

http://dl.dropbox.com/u/5095342/PIC/pic.html

This site uses html5 so you will need a current version of your browser to see algorithm runtimes. IE9, firefox 4 or current google chrome web browser.

Reply
lubos

August 3, 2011 at 6:57 am
Thanks John! It would be great if you could add support for graphing the results. But I think this would require running the code as an applet, or alternatively server-side.

Reply
John

August 3, 2011 at 10:27 am
I updated the page so that it now displays a graph of the output. It uses the html5 “canvas” element to display the graph.

Reply
lubos

August 3, 2011 at 11:26 am
Nice! Thank you for doing this, John. I had no idea it was so easy to draw using Javascript (I am definitely not up to date when it comes to HTML5). I’ll try to do something similar for future posts to give visitors
something to play with.

Reply
4. Phil
October 24, 2011 at 2:51 am
Hey there, nice article!
Quick question about your reference to the Boris method – you have it as MATT-152 whereas a quick web search found mostly references to MATT-769 – I cant seem to get any text from either report (maybe im
looking in the wrong place) could you confirm which report it is?

Reply

5. Elias
April 25, 2012 at 1:57 am
Hi, thanks for all these nice tutorials. I have never used C++ or Java, but I am starting now, so the tutorials here are useful. One question is about vectorization – is that also a feature that can speed up things a bit. E.g.
in other high-level languages I am using, to avoid loops its enough to write:

t = part.q/part.m*B*0.5*dt

instead of placing the calculation of each vector element in a loop, as you have in the available code. I use this option as much as possible, also to make calculations for many particles simultaneously. Is that possible
in Java or C?

Reply
Lubos

April 25, 2012 at 4:05 am
HI Elias, not that I know of, unless you start dealing with extensions such as CUDA. The reason why vector operations are so much faster in Matlab is that Matlab is an interpretive language that doesn’t precompile
the code. As Matlab chugs through your code, it first translates each instruction from its syntax to the machine language before executing it. This happens even for code inside loops. So if you have a code such as

for i=1:1000
   sum = sum + data[i];
end

the instruction inside the loop (sum = sum + data[i]) ends up getting compiled 1000 times. This is a huge waste of computational resources. A vector statement results in only a single compilation. Java and C/C++
are both precompiled languages – C/C++ codes get translated to the machine language directly, while Java is turned into a byte code – and as such you don’t have to worry about issues like this. Unless you are
actually using a vector computer, a single line syntax will not gain you much except for perhaps a slicker looking code. The way to get an actual speed up is by performing the calculation on a the graphics card (GPU)
using language extensions such as CUDA. Graphics cards are in reality highly optimized vector computers that can perform operations on multiple components of an array concurrently. But that’s a topic for a future
discussion…

Reply
6. Rushat
June 12, 2012 at 7:46 pm
Hi there,

I am also running similar particle codes. Do you know of how much integration time is needed for such trajectories or it is just upto the user? In other words, does it need to be some gyro periods long? Also, with
regards to non-guiding center motion, such integration times could be any number…..how does one determine such numbers for these nonlinear problems (spatial dependence in B)?

Thanks

Reply
Lubos

June 13, 2012 at 5:57 am
Hi Rushat, are you talking about the size of the simulation time step? If so, in a fully-kinetic simulation, where you simulate electrons and ions as particles, you will in general have two frequencies to consider: the
plasma frequency and the cyclotron frequency. You need to set you simulation such that you resolve the higher of these. Also, in order for this Boris integration scheme to work, you need to take multiple steps about
the orbit. I did some parametric studies as part of my dissertation work, and found (if I remember right) that the error started being somewhat acceptable with 15 steps per orbit, and reduced to below 0.1% with 75
steps per orbit. This error took into account both the displacement of the guiding center and the correct Larmor radius. In my simulation I ended up setting the time step based on the highest value of the magnetic
field in the simulation, since the cyclotron frequency scales linearly with the field strength.

Reply

7. Rushat
July 17, 2012 at 2:55 pm
Hey Lubos,

Thanks for the reply. I guess I did not explain the problem correctly. The thing is I am not doing any PIC type simulation. I am just running for trajectories of particles in a given magnetic field. I am not solving it self-
consistently. So, I am wondering if for my problem, what would be a sufficient ending time (normalized to gyro-frequency) for eg for protons……200*gyro-freq or 200*gyro-freq.

Thanks

Reply
8. Rushat
July 17, 2012 at 2:56 pm
I meant 200*gyro-freq or 2000*gyro-freq as the ending time??

Reply
Lubos

July 17, 2012 at 3:58 pm
I guess I am still confused 

!

There is no “defined” ending time. This depends on your simulation, on what exactly you are simulating. If for instance you want to simulate one second of real time, you will need enough time steps to capture this
(n_it = 1 sec / delta_t). On the other hand, PIC simulations are typically run until steady state which is defined by some parameter no longer changing. For a plume simulation, where you continuously inject particles
from the source, the steady state is reached once the total particle count no longer changes. But if you preload the sim with a fixed number of particles and simply let these evolve, you will want to run the simulation
until something else (velocity, temperature, mean position?) stops changing significantly.

Reply
9. Jason
August 6, 2012 at 5:53 am
Hi,

Nice tutorial, thanks. Do you know of a similarly well-written example of a relativistic Boris pusher? Is is as simple as using the gamma factor at the ‘old’ time step, or does something more clever have to be done?

Thanks

Reply
Lubos

August 30, 2012 at 12:16 pm
Hi Jason, no and sorry, I am not familiar with relativistic PIC codes. All the work I have ever done was with velocities < 1e7 m/s.

Reply

charlson
December 20, 2012 at 2:47 pm
look in the Birdsall reference.

in short, yes you are correct, it is just a matter of applying gamma but it must be done in a properly centered fashion.

Reply
Lubos

December 21, 2012 at 4:05 pm
Charlson, do you have an example you could share?

Reply
10. Aleksandar
September 5, 2013 at 4:02 am
For relativistic PIC code, where do I need to apply gamma?

Reply
11. mahsoun
November 19, 2013 at 2:45 am
Hi. I am trying to simulate particle movement in presence of a magnetic filed, But, I don’t know how to find current values. Of course, I have used the relation current=rho*velocity, But , I think this is not true. Can you
help me to obviate my problem? (I am sorry for my poor English)

Reply

12. JC.Zhang
November 6, 2014 at 10:25 pm
Hi, very helpful article you write. I download your java program and run it in NetBeans. I modified some pramaters and it worked. However I just got the larmor radius as results. How can I got the full results like
positions in every time steps?

Reply
Lubos

November 7, 2014 at 8:03 pm
There should be a file called “trace.txt” that contains these in the directory from where you ran the program.

Reply
13. kcd
October 2, 2015 at 9:49 pm
Here is my attempt to put it back as a matrix-vector product like in part 1, but derived by Boris method.

http://braingab.blogspot.com/2015/10/particle-pushing-with-boris-method.html

Reply

14. Dimitris
December 19, 2016 at 11:34 pm
Hello,

in the Boris method, in the denominator of the s vector, the s^2 is the (sx^2+sy^2+sz^2) or the si^2 where i=x,y,z for each vector component?

Reply
Lubos

December 21, 2016 at 9:36 am
The denominator is (1+t^2) if I am looking at the same equation as you. That “t” is the magnitude of the “t” vector so t^2 is tx^2+ty^2+tz^2.

Reply
15. frank
September 22, 2017 at 8:42 am
Hi Lubos, I have a question. If we consider the vxB part only, is the Boris mover an alternative implementation of the Tajima’s implicit mover? They seem to solve the same original equation to push v_n-1/2 to v_n+1/2.
Also, would they be stable under crazily bad dx or dt, like dt * Omega_ce ~ 1e5?

Reply
16. srie
November 28, 2017 at 12:46 am
how is “s” become “2t/1+t^2”?

Reply

17. SOFIA
July 22, 2019 at 2:59 am
i have question related to boris code. code which i am writing has 3 different normalized values of velocities.now i have to convert it in ms-1.i am unable to find normalization factor with which i multiply it with to
convert it in ms-1. kindly help me

Reply
SOFIA

July 22, 2019 at 3:04 am
in my case i am using the velocity v=(0.1,0.01,0)^T. kindky help me to convert in ms-1.

Reply
18. Maxwell Rosen
September 2, 2020 at 6:36 pm
There is a typo in the equation s=2t/(1+t^2) for Boris’s algorithm. The t in the deonominator should be bolded since it is a vector. From the way it is typed, it looks like one is vec(t) and the other is t like time as in
$\delta t$ you have defined earlier.

Reply
19. Fergus
March 18, 2021 at 1:26 am
This has been a very helpful first introduction into numerical methods.
Thank you!
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PARTICLE PUSH IN MAGNETIC FIELD (BORIS METHOD)

Posted on July 11th, 2011
Previous Article :: Next Article

In the previous article, we discussed how to integrate charged particle velocity in the presence of electric field. We now include the magnetic component. As you already know, magnetic field causes charged
particles to rotate about the field line. This component is thus often called v×B (or v cross B) rotation.

SIMPLE IMPLEMENTATION FOR E=0, FORWARD DIFFERENCE
First let’s consider a case without any electric field. The governing equation for velocity is then  (here we are using bold typeface for vector quantities). A simple implementation of the integrator
for 2D case with a magnetic field in the k direction appears to be:

/*grab magnetic field at current position*/ 
B=EvalB(x); 
 
/*get new velocity at n+1*/ 
v2[0] = v[0] + q/m*B*v[1]*dt; 
v2[1] = v[1] - q/m*B*v[0]*dt; 
 
/*update position*/ 
x2[0] = x[0] + v2[0]*dt; 
x2[1] = x[1] + v2[1]*dt; 
 
/*push down*/ 
v[0]=v2[0]; 
v[1]=v2[1]; 

Here velocity is assumed to exist at half times in the spirit of the leapfrog scheme (i.e. v = v[n-1/2] and v2 = v[n+1/2]). If you implement this method (as done in UpdateVelocityForward in the attached code), you’ll see
right away that it doesn’t work. As shown in Figure 1 below, the result is quite similar to what happened earlier in the case of forward difference integrator for the B=0 case. The particle keeps gaining energy, and
instead of completing closed circles around the guiding center, it is continuously spiraling away.

Figure 1. Incorrect result obtained with the forward integration of vxB rotation. The particle is gaining numerical energy, as shown by its orbit spiraling away. The analytical result is a closed circular orbit at the Larmor
radius, which is shown by the solid blue line.
LORENTZ INTEGRATOR 1: TAJIMA’S IMPLICIT METHOD
Getting the right solution requires taking approach similar to what was done previously for the electrostatic case. Instead of updating the velocity from time “n-1/2” to “n+1/2” using the velocity at “n-1/2”, we should
use the average velocity at time “n”. This modifies our Lorentz force integrator to

This expression can be rewritten in matrix notation as

where I is the identity matrix, R is the unit rotation matrix given by

and ε is the scaling factor, . Unfortunately, this equation is implicit, and solving it requires performing a matrix inversion. The solution is given by

with the matrix inverse given by Tajima as

This method is implemented in the attached Java integrator as UpdateVelocityTajimaImplicit. As you can see in Figure 2 below, it indeed works. Not only is the energy conserved, but the computed Larmor
radius is also right. We used 0.01T for the magnetic strength, the particle is an electron, and has initial tangential velocity of 100,000m/s. The Larmor radius, .

Figure 2. Result obtained with the implicit method from Tajima. This time, the particle trajectory is integrated correctly, and the energy is conserved.
Unfortunately, as you can see, this method is rather complicated, and involves a significant amount of calculation. At millions of particles per simulation, these calculations quickly add up into slow code
performance…

LORENTZ INTEGRATOR 2: TAJIMA’S EXPLICIT METHOD
Tajima introduced a method that can be used if a small enough time step is selected such that ε<<1. In that case . By substituting and eliminating the quadratic term, we obtain

But as shown in Figure 3, this method is also incorrect for time steps practical to kinetic plasma simulations. This can be clearly seen by looking at the equation. In the absence of electric field, this integrator is
identical to the original forward difference.

Figure 3. Result obtained with the explicit method from Tajima. The result is again incorrect.
LORENTZ INTEGRATOR 3: BORIS METHOD
So are we stuck using the expensive implicit method? No, not quite. In 1970, Boris described an elegant alternative, which is now commonly known as the Boris Method. Boris method is the de facto standard for
particle pushing in plasma simulation codes. Again, we are solving

Boris noticed that we can eliminate the electric field by defining

When these definitions are substituted into the original equation, we obtain pure rotation

Boris next utilized some basic geometry (see Figure 4-4a in Birdsall, p. 62) to derive the expression for performing the rotation. The first step is to find the vector bisecting the angle formed by the pre- and the (to be
yet computed) post-rotation velocity. The angle through which the velocity will rotate in the given time step is, from geometry, . The vector form of this is .
The bisector vector (v prime) is then

This “v prime” vector is perpendicular to both the magnetic field (the vector “t”) and the vector from “v minus” to “v plus”, the post-rotation velocity we are looking for. This connecting vector is again obtained from
geometry as the cross product of “v prime” and a new vector “s”. This vector “s” is just a version of the rotation vector “t” scaled to satisfy the requirement that magnitude of velocity remains constant in the rotation.
Mathematically speaking

where

To implement the Boris method, first obtain “v minus” by adding half acceleration to the initial velocity, per Equation 1. Then perform the full rotation according to Equations 3 and 4. Finally, add another half
acceleration, as given by Equation 2.

Figure 4. Result obtained using the Boris method. Energy is conserved.
IMPLEMENTATION
All four methods described here are implemented in the attached Java program, ParticleIntegrator.java (Netbeans Workspace, zip). Java is actually a great language for scientific computing. Although in the past
Java used to be much slower than C/C++, this is no longer case. The syntax is very similar to C++, but Java comes bundled with a large standard library which makes it very easy to do things such as add
multithreading to your code. All this is possible in C/C++, but requires downloading additional libraries, compiling them for your architecture, and making sure they play well with your makefiles/workspace. None of
this is necessary in Java, as it already comes preinstalled.

The program implements a particle push integrator than advances a single particle in 3D electromagnetic fields for a specified number of time steps. The fields at the particle velocity are evaluated by calling
functions EvalE and EvalB. Currently these return constant values, but feel free to experiment to make the fields variable. A function called UpdateVelocity acts as a wrapper that calls the appropriate
implementation. The Boris method is coded up in the attached Java program in the function UpdateVelocityBoris. To switch between the different methods, simply uncomment the appropriate call on line 72 in
function UpdateVelocity. To switch from an electron to a heavier ion, simply modify the charge and mass in the Particle class definition on line 84.

ATTACHMENTS:
1. ParticleIntegrator.java (source code for plasma particle integrator)
2. ParticleIntegrator.zip (NetBeans workspace, zipped file)
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1. Lubos
July 12, 2011 at 4:26 pm
Feel free to leave a comment if you have any questions or something isn’t clear. Thank you for stopping by!

Reply

2. Matthias
July 13, 2011 at 6:45 am
Nice article, I didn’t know about Tajima although my Boris implementation was in fact Tajima. It wasn’t too slow since the difference in needed floating point operations isn’t that serious for a 2D case.
So implicit Tajima and Boris produce the same trajectory (assuming infinite precision). Rearranging and simplyfing the Tajima expression for “v plus” gives Boris, so Boris could be derived without geometric
interpretation as a rotation, but with just reducing the number of floating point operations in mind.

Reply
Matthias

July 13, 2011 at 6:55 am
Correction: What I said about the relation of Tajima and Boris is for the case where no electric field is present. I am not sure for the general case.

Reply
Lubos

July 13, 2011 at 6:13 pm
That definitely makes sense. Thanks for pointing this out! I sort of figured that in the end the implicit and the multi-step Boris method should be the same but I didn’t really feel the motivation to prove it. I also
implemented the implicit solver the way it’s written in Tajima’s book, with actual matrix inversion and matrix multiplication. I bet that bunch of terms end up cancelling out in the end. But the way it is written, this
implicit method took about 2 seconds for some 10 million time steps, while the Boris method took about about 1.2. So roughly 60% slower or so (with the non-optimized versions)…

Reply
3. John
August 3, 2011 at 4:52 am
I converted this example to javascript to run in a webpage. You can see the results here.

http://dl.dropbox.com/u/5095342/PIC/pic.html

This site uses html5 so you will need a current version of your browser to see algorithm runtimes. IE9, firefox 4 or current google chrome web browser.

Reply
lubos

August 3, 2011 at 6:57 am
Thanks John! It would be great if you could add support for graphing the results. But I think this would require running the code as an applet, or alternatively server-side.

Reply
John

August 3, 2011 at 10:27 am
I updated the page so that it now displays a graph of the output. It uses the html5 “canvas” element to display the graph.

Reply
lubos

August 3, 2011 at 11:26 am
Nice! Thank you for doing this, John. I had no idea it was so easy to draw using Javascript (I am definitely not up to date when it comes to HTML5). I’ll try to do something similar for future posts to give visitors
something to play with.

Reply
4. Phil
October 24, 2011 at 2:51 am
Hey there, nice article!
Quick question about your reference to the Boris method – you have it as MATT-152 whereas a quick web search found mostly references to MATT-769 – I cant seem to get any text from either report (maybe im
looking in the wrong place) could you confirm which report it is?

Reply

5. Elias
April 25, 2012 at 1:57 am
Hi, thanks for all these nice tutorials. I have never used C++ or Java, but I am starting now, so the tutorials here are useful. One question is about vectorization – is that also a feature that can speed up things a bit. E.g.
in other high-level languages I am using, to avoid loops its enough to write:

t = part.q/part.m*B*0.5*dt

instead of placing the calculation of each vector element in a loop, as you have in the available code. I use this option as much as possible, also to make calculations for many particles simultaneously. Is that possible
in Java or C?

Reply
Lubos

April 25, 2012 at 4:05 am
HI Elias, not that I know of, unless you start dealing with extensions such as CUDA. The reason why vector operations are so much faster in Matlab is that Matlab is an interpretive language that doesn’t precompile
the code. As Matlab chugs through your code, it first translates each instruction from its syntax to the machine language before executing it. This happens even for code inside loops. So if you have a code such as

for i=1:1000
   sum = sum + data[i];
end

the instruction inside the loop (sum = sum + data[i]) ends up getting compiled 1000 times. This is a huge waste of computational resources. A vector statement results in only a single compilation. Java and C/C++
are both precompiled languages – C/C++ codes get translated to the machine language directly, while Java is turned into a byte code – and as such you don’t have to worry about issues like this. Unless you are
actually using a vector computer, a single line syntax will not gain you much except for perhaps a slicker looking code. The way to get an actual speed up is by performing the calculation on a the graphics card (GPU)
using language extensions such as CUDA. Graphics cards are in reality highly optimized vector computers that can perform operations on multiple components of an array concurrently. But that’s a topic for a future
discussion…

Reply
6. Rushat
June 12, 2012 at 7:46 pm
Hi there,

I am also running similar particle codes. Do you know of how much integration time is needed for such trajectories or it is just upto the user? In other words, does it need to be some gyro periods long? Also, with
regards to non-guiding center motion, such integration times could be any number…..how does one determine such numbers for these nonlinear problems (spatial dependence in B)?

Thanks

Reply
Lubos

June 13, 2012 at 5:57 am
Hi Rushat, are you talking about the size of the simulation time step? If so, in a fully-kinetic simulation, where you simulate electrons and ions as particles, you will in general have two frequencies to consider: the
plasma frequency and the cyclotron frequency. You need to set you simulation such that you resolve the higher of these. Also, in order for this Boris integration scheme to work, you need to take multiple steps about
the orbit. I did some parametric studies as part of my dissertation work, and found (if I remember right) that the error started being somewhat acceptable with 15 steps per orbit, and reduced to below 0.1% with 75
steps per orbit. This error took into account both the displacement of the guiding center and the correct Larmor radius. In my simulation I ended up setting the time step based on the highest value of the magnetic
field in the simulation, since the cyclotron frequency scales linearly with the field strength.

Reply

7. Rushat
July 17, 2012 at 2:55 pm
Hey Lubos,

Thanks for the reply. I guess I did not explain the problem correctly. The thing is I am not doing any PIC type simulation. I am just running for trajectories of particles in a given magnetic field. I am not solving it self-
consistently. So, I am wondering if for my problem, what would be a sufficient ending time (normalized to gyro-frequency) for eg for protons……200*gyro-freq or 200*gyro-freq.

Thanks

Reply
8. Rushat
July 17, 2012 at 2:56 pm
I meant 200*gyro-freq or 2000*gyro-freq as the ending time??

Reply
Lubos

July 17, 2012 at 3:58 pm
I guess I am still confused 

!

There is no “defined” ending time. This depends on your simulation, on what exactly you are simulating. If for instance you want to simulate one second of real time, you will need enough time steps to capture this
(n_it = 1 sec / delta_t). On the other hand, PIC simulations are typically run until steady state which is defined by some parameter no longer changing. For a plume simulation, where you continuously inject particles
from the source, the steady state is reached once the total particle count no longer changes. But if you preload the sim with a fixed number of particles and simply let these evolve, you will want to run the simulation
until something else (velocity, temperature, mean position?) stops changing significantly.

Reply
9. Jason
August 6, 2012 at 5:53 am
Hi,

Nice tutorial, thanks. Do you know of a similarly well-written example of a relativistic Boris pusher? Is is as simple as using the gamma factor at the ‘old’ time step, or does something more clever have to be done?

Thanks

Reply
Lubos

August 30, 2012 at 12:16 pm
Hi Jason, no and sorry, I am not familiar with relativistic PIC codes. All the work I have ever done was with velocities < 1e7 m/s.

Reply

charlson
December 20, 2012 at 2:47 pm
look in the Birdsall reference.

in short, yes you are correct, it is just a matter of applying gamma but it must be done in a properly centered fashion.

Reply
Lubos

December 21, 2012 at 4:05 pm
Charlson, do you have an example you could share?

Reply
10. Aleksandar
September 5, 2013 at 4:02 am
For relativistic PIC code, where do I need to apply gamma?

Reply
11. mahsoun
November 19, 2013 at 2:45 am
Hi. I am trying to simulate particle movement in presence of a magnetic filed, But, I don’t know how to find current values. Of course, I have used the relation current=rho*velocity, But , I think this is not true. Can you
help me to obviate my problem? (I am sorry for my poor English)

Reply

12. JC.Zhang
November 6, 2014 at 10:25 pm
Hi, very helpful article you write. I download your java program and run it in NetBeans. I modified some pramaters and it worked. However I just got the larmor radius as results. How can I got the full results like
positions in every time steps?

Reply
Lubos

November 7, 2014 at 8:03 pm
There should be a file called “trace.txt” that contains these in the directory from where you ran the program.

Reply
13. kcd
October 2, 2015 at 9:49 pm
Here is my attempt to put it back as a matrix-vector product like in part 1, but derived by Boris method.

http://braingab.blogspot.com/2015/10/particle-pushing-with-boris-method.html

Reply

14. Dimitris
December 19, 2016 at 11:34 pm
Hello,

in the Boris method, in the denominator of the s vector, the s^2 is the (sx^2+sy^2+sz^2) or the si^2 where i=x,y,z for each vector component?

Reply
Lubos

December 21, 2016 at 9:36 am
The denominator is (1+t^2) if I am looking at the same equation as you. That “t” is the magnitude of the “t” vector so t^2 is tx^2+ty^2+tz^2.

Reply
15. frank
September 22, 2017 at 8:42 am
Hi Lubos, I have a question. If we consider the vxB part only, is the Boris mover an alternative implementation of the Tajima’s implicit mover? They seem to solve the same original equation to push v_n-1/2 to v_n+1/2.
Also, would they be stable under crazily bad dx or dt, like dt * Omega_ce ~ 1e5?

Reply
16. srie
November 28, 2017 at 12:46 am
how is “s” become “2t/1+t^2”?

Reply

17. SOFIA
July 22, 2019 at 2:59 am
i have question related to boris code. code which i am writing has 3 different normalized values of velocities.now i have to convert it in ms-1.i am unable to find normalization factor with which i multiply it with to
convert it in ms-1. kindly help me

Reply
SOFIA

July 22, 2019 at 3:04 am
in my case i am using the velocity v=(0.1,0.01,0)^T. kindky help me to convert in ms-1.

Reply
18. Maxwell Rosen
September 2, 2020 at 6:36 pm
There is a typo in the equation s=2t/(1+t^2) for Boris’s algorithm. The t in the deonominator should be bolded since it is a vector. From the way it is typed, it looks like one is vec(t) and the other is t like time as in
$\delta t$ you have defined earlier.

Reply
19. Fergus
March 18, 2021 at 1:26 am
This has been a very helpful first introduction into numerical methods.
Thank you!

Reply
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Synthetic Turbulence
Requirements for an Advanced Synthetic Turbulence Model

i) The synthetic magnetic fields have to be divergence free: ∇ · B⃗ = 0.

ii) The synthetic fields need to be homogeneous.

iii) The synthetic fields should reproduce a predefined energy spectrum (Kolmogorov, 
1941; Iroshnikov, 1963; Kraichnan, 1965; Boldyrev, 2005).

iv) There should be no restriction other than computational ones for a maximum 
Reynolds number.

v) The spectrum should be anisotropic, which means that it should have different 
exponents perpendicular and parallel to a local guide field (Goldreich & Sridhar, 1995; 
Boldyrev, 2005).

vi) The generation of the synthetic fields must be local and adaptive in space.

vii) The synthetic turbulence should exhibit intermittency, as prescribed by a given 
intermittency model.
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to be exact. Furthermore, Eq. (9.39) with a2 = 1/3 is already close to the fluid limit where
a2 = 1. The parameters often used in the context of slab/2D turbulence lead to a scenario
where perpendicular transport ends up somewhere between CLRR and fluid limits. One
would expect that changing turbulence and particle parameters could easily lead to different
values of a2 and in some cases one would even expect a2 = 1.

More examples and a comparison between UNLT theory, the heuristic approach, and
test-particle simulations is presented in the next section (see Figs. 21 and 22).

10 Test-Particle Simulations

The work discussed so far is entirely based on analytical considerations. An alternative tool
for describing the transport of energetic particles through magnetic turbulence is provided by
test-particle simulations. They are also useful in order to test the validity and accuracy of the
analytical theories discussed so far. Ideally there is agreement between theory, simulations,
and observations.

Test-particle simulations consist of the following three steps:

1. First we need to generate the magnetic fields by employing a turbulence model very
similar compared to the models used in analytical theories (see Sect. 2 of this review).
A problem is that the computational time needed for turbulence creation increases sig-
nificantly if three-dimensional or time-dependent models are employed.

2. The second step is to solve the Newton-Lorentz equation (4.1) to obtain the particle or-
bits. Since the Newton-Lorentz equation is a second-order ordinary differential equation,
one usually employs standard solvers such as fourth-order Runge-Kutta integrators with
adaptive time steps (see, e.g., Press et al. 2007). An alternative is provided by symplectic
integrators leading to better energy conservation (see Arendt and Shalchi 2018).

3. The last step is to ensemble average the obtained orbits to compute the diffusion pa-
rameters in the different directions of space. Furthermore, one can also obtain particle
distribution functions, mean square displacements, and velocity correlation functions. In
order to get results with high accuracy and to reduce noise, one has to perform such
simulations by using thousands of particles.

In the following we present a more detailed description of these steps and thereafter we show
numerical results together with a comparison with analytical results for different turbulence
configurations.

10.1 Generating the Turbulence

As described above, test-particle simulations are a common tool in the theory of particle
transport. In the following we summarize the method and employ the notation used before
in Hussein and Shalchi (2014a), Hussein et al. (2015), Hussein and Shalchi (2016) as well
as Arendt and Shalchi (2018). This approach, however, is based on previous papers such
as Giacalone and Jokipii (1999) as well as Tautz (2010b). The most common technique to
generate magnetic turbulence is to sum over a large number of plane waves with random
phases, polarizations, amplitudes, and orientations. In test-particle simulations the turbulent
magnetic field vector is created via

δB(x) =
√

2δB

N∑

n=1

A(kn)ξn cos[kn · x + βn] (10.1)

where N is the number of wave modes. The quantity A(kn) denotes the amplitude function
and is discussed below. In Eq. (10.1) we have also used the wave vector kn = knek,n with the

23 Page 6 of 134 A. Shalchi

Shalchi (2015a) a Rechester & Rosenbluth type of diffusion coefficient was derived from
UNLT theory indicating that there is at least some connection between Rechester and Rosen-
bluth (1978) and energetic particle transport in space plasmas. In Shalchi (2019a) a heuris-
tic approach for perpendicular transport was developed providing different formulas for the
perpendicular diffusion coefficient. This finally provided an explanation of the parameter
a2 used in previous analytical theories. Furthermore, this heuristic approach explained how
systematic theories could be improved in the future which could lead to a complete under-
standing of perpendicular transport.

It is the purpose of this review article to discuss developments in the analytical theory of
perpendicular diffusion over the past 50 years. This also includes a brief review of heuris-
tic approaches and test-particle simulations. It will be shown that perpendicular diffusion
depends on the properties of the turbulent magnetic fields but also on parallel diffusion.
Therefore, this review will start with a discussion of various turbulence models which were
proposed in the literature over the past view decades (Sect. 2) followed by a review of theo-
ries developed for field line random walk (Sect. 3) a process that often controls perpendicu-
lar transport. Thereafter, the reader will find a short discussion of parallel particle transport
(Sect. 4). However, parallel diffusion itself is complicated and still subject of current re-
search. The main focus of this review is on perpendicular diffusion of energetic particles
(Sect. 5) with the emphasis on the unified non-linear transport theory including a discussion
of different transport regimes (Sect. 6), time-dependent transport (Sect. 7), simple analytical
forms (Sect. 8), and a recently developed heuristic approach (Sect. 9). Thereafter, there is
a discussion of numerical tools used in transport theory as well as a comparison between
simulations and analytical theory (Sect. 10). Although not the central point of this review,
the reader can also find some applications of the results discussed in this review (Sect. 11)
such as particle propagation through interplanetary and interstellar spaces as well as the
role of perpendicular diffusion in the theory of diffusive shock acceleration. At the end of
this article there will be a summary, a conclusion, and a short outlook (Sect. 12) discussing
unsolved problems and possible future projects.

2 Analytic Models for Magnetic Turbulence

In analytical theories for perpendicular diffusion the components of the so-called spectral
tensor are required as input as shown in Sect. 5. In the following we discuss different models
which were proposed in the past. It needs to be emphasized that the theoretical study of
turbulence is an ongoing field of research. Therefore, the models discussed in the following
are not supposed to be the final solution to the problem. Instead they should be understood
as examples sometimes motivated by solar wind observations or theoretical work. After
presenting these models, fundamental turbulence scales such as integral scales and the ultra-
scale are discussed.

2.1 Correlation and Spectral Tensors

Especially in astrophysics and space science we deal with magnetic turbulence. The knowl-
edge of the properties of these stochastic magnetic fields is important in several applications
such as the theory of field line random walk and cosmic ray propagation. We consider a
physical system where the total magnetic field is a position of a mean field B0 and a turbu-
lent component δBn

B(x, t) = B0ez + δB(x, t). (2.1)

Magnetostatic Turbulence (following Shalchi 2020 review)
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to be exact. Furthermore, Eq. (9.39) with a2 = 1/3 is already close to the fluid limit where
a2 = 1. The parameters often used in the context of slab/2D turbulence lead to a scenario
where perpendicular transport ends up somewhere between CLRR and fluid limits. One
would expect that changing turbulence and particle parameters could easily lead to different
values of a2 and in some cases one would even expect a2 = 1.

More examples and a comparison between UNLT theory, the heuristic approach, and
test-particle simulations is presented in the next section (see Figs. 21 and 22).

10 Test-Particle Simulations

The work discussed so far is entirely based on analytical considerations. An alternative tool
for describing the transport of energetic particles through magnetic turbulence is provided by
test-particle simulations. They are also useful in order to test the validity and accuracy of the
analytical theories discussed so far. Ideally there is agreement between theory, simulations,
and observations.

Test-particle simulations consist of the following three steps:

1. First we need to generate the magnetic fields by employing a turbulence model very
similar compared to the models used in analytical theories (see Sect. 2 of this review).
A problem is that the computational time needed for turbulence creation increases sig-
nificantly if three-dimensional or time-dependent models are employed.

2. The second step is to solve the Newton-Lorentz equation (4.1) to obtain the particle or-
bits. Since the Newton-Lorentz equation is a second-order ordinary differential equation,
one usually employs standard solvers such as fourth-order Runge-Kutta integrators with
adaptive time steps (see, e.g., Press et al. 2007). An alternative is provided by symplectic
integrators leading to better energy conservation (see Arendt and Shalchi 2018).

3. The last step is to ensemble average the obtained orbits to compute the diffusion pa-
rameters in the different directions of space. Furthermore, one can also obtain particle
distribution functions, mean square displacements, and velocity correlation functions. In
order to get results with high accuracy and to reduce noise, one has to perform such
simulations by using thousands of particles.

In the following we present a more detailed description of these steps and thereafter we show
numerical results together with a comparison with analytical results for different turbulence
configurations.

10.1 Generating the Turbulence

As described above, test-particle simulations are a common tool in the theory of particle
transport. In the following we summarize the method and employ the notation used before
in Hussein and Shalchi (2014a), Hussein et al. (2015), Hussein and Shalchi (2016) as well
as Arendt and Shalchi (2018). This approach, however, is based on previous papers such
as Giacalone and Jokipii (1999) as well as Tautz (2010b). The most common technique to
generate magnetic turbulence is to sum over a large number of plane waves with random
phases, polarizations, amplitudes, and orientations. In test-particle simulations the turbulent
magnetic field vector is created via

δB(x) =
√

2δB

N∑

n=1

A(kn)ξn cos[kn · x + βn] (10.1)

where N is the number of wave modes. The quantity A(kn) denotes the amplitude function
and is discussed below. In Eq. (10.1) we have also used the wave vector kn = knek,n with the
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Table 8 The values of the parameters used in the simulations for the different turbulence models. Here we
have listed the parameters ηn , αn, and #n used in Eqs. (10.1)–(10.3) in order to create the turbulent magnetic
field. The parameters $‖ , $⊥ , and $0 are the corresponding bendover scales. The used values for the energy
range spectral index q are also listed. The first three cases are based on a single sum in the field creation
whereas the last two cases are based on a double-sum
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with ηn = cos θn. The angles θn, φn, and αn can have a specific value or they are random
numbers depending on the simulated turbulence model (see Table 8 of the current paper for
some examples).

If the slab model is simulated, for instance, we set ηn = 1 so that ek,n = ez for all n.
Furthermore, we set αn = 0 so that ξn = − sinφnex + cosφney for all n. This choice of ηn

and αn ensures that all wave vectors are aligned parallel with respect to the mean field and
that δBz = 0. These are exactly the conditions which need to be satisfied if the slab model is
considered. The remaining angles φn are random numbers satisfying 0 ≤ φn < 2π emulating
the chaotic nature of the field δB.

In a very similar manner we can generate two-dimensional turbulence. In this case
we set αn = 0 as before to ensure that δBz = 0. However, we now use ηn = 0 so that
ek,n = cosφnex + sinφney and ξn = − sinφnx + cosφney as required for two-dimensional
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θn, φn, and αn are random numbers leading to a turbulence model where the wave vector as
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have ek,n · ξn = 0, corresponding to the solenoidal constraint k · δB = 0, as required. The
amplitude function A(kn) used in Eq. (10.1) depends on the spectrum G(kn) via
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The parameter !kn describes the spacing between wave numbers and is discussed below.
Note, the wave numbers used in simulations are unitless meaning that the physical wave
numbers are multiplied by a characteristic scale of turbulence, usually one of the bendover
scales. This means, for instance, that for slab turbulence the parameter kn in Eq. (10.4) is
really kn"‖. The amplitude function (10.4) has to be normalized so that

N∑

n=1

A2(kn) = 1. (10.5)

Using Eq. (10.4) in the latter condition yields

N∑

n=1

A2(kn) =
∑N

n=1 G(kn)!kn∑N
m=1 G(km)!km

= 1. (10.6)

For the spectrum G(kn) we use a form corresponding to the analytical models described in
Sect. 2, namely

G(kn) = k
q
n

(1 + k2
n)

(s+q)/2
. (10.7)

The parameters q and s are energy and inertial range spectral indices as before. The used
values for these two parameters and the meaning of kn in the different models are summa-
rized in Table 8. In most simulations a logarithmic spacing in kn is implemented so that

!kn

kn

= exp
[

ln(kmax/kmin)

N − 1

]
(10.8)

which is constant. In the context of two-dimensional turbulence the grid created in wave
number space via Eq. (10.8) is visualized in Fig. 3 together with the spectra used in analytical
treatments of field line and particle transport.19 Furthermore, the possible values for the wave
numbers are restricted by kmin ≤ kn ≤ kmax. Typical values for minimum and maximum
wave numbers are kmin = 10−5 and kmax = 103. There are two constraints that should be
taken into account in test-particle simulations. First we know that pitch-angle scattering
happens mostly close to the resonance condition µRLk‖ = 1 (see Sect. 4.3). Therefore, the
simulations have to be performed so that we hit the resonance. Furthermore, we need to
ensure that no particle travels more than the distance Lmax = k−1

min. This is done via the
relation vtmax < Lmax corresponding to a restriction of time. For kmin = 10−5, for instance,
we have Lmax = 105 leading to the condition vtmax < 105". Since in the simulations we use
T = #t for time, this turns into TmaxRL/" < 105. Obviously, this restriction becomes more
relevant for high rigidities.

10.2 More General Models for Turbulence

As obvious from Eq. (10.1), we only discuss the case of magnetostatic turbulence here.
Of course, one can incorporate wave propagation effects in such simulations (see, e.g.,
Michałek and Ostrowski 1996; Tautz 2010b; Hussein and Shalchi 2014b). Test-particle sim-
ulations in dynamical turbulence were performed for the first time in Hussein and Shalchi
(2016) based on a more-dimensional Fourier technique.

19The grid shown in Fig. 3 is just an example. Usually in such simulations we use a large number of wave
numbers such as N = 256.
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with ηn = cos θn. The angles θn, φn, and αn can have a specific value or they are random
numbers depending on the simulated turbulence model (see Table 8 of the current paper for
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the chaotic nature of the field δB.
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to be exact. Furthermore, Eq. (9.39) with a2 = 1/3 is already close to the fluid limit where
a2 = 1. The parameters often used in the context of slab/2D turbulence lead to a scenario
where perpendicular transport ends up somewhere between CLRR and fluid limits. One
would expect that changing turbulence and particle parameters could easily lead to different
values of a2 and in some cases one would even expect a2 = 1.

More examples and a comparison between UNLT theory, the heuristic approach, and
test-particle simulations is presented in the next section (see Figs. 21 and 22).

10 Test-Particle Simulations

The work discussed so far is entirely based on analytical considerations. An alternative tool
for describing the transport of energetic particles through magnetic turbulence is provided by
test-particle simulations. They are also useful in order to test the validity and accuracy of the
analytical theories discussed so far. Ideally there is agreement between theory, simulations,
and observations.

Test-particle simulations consist of the following three steps:

1. First we need to generate the magnetic fields by employing a turbulence model very
similar compared to the models used in analytical theories (see Sect. 2 of this review).
A problem is that the computational time needed for turbulence creation increases sig-
nificantly if three-dimensional or time-dependent models are employed.

2. The second step is to solve the Newton-Lorentz equation (4.1) to obtain the particle or-
bits. Since the Newton-Lorentz equation is a second-order ordinary differential equation,
one usually employs standard solvers such as fourth-order Runge-Kutta integrators with
adaptive time steps (see, e.g., Press et al. 2007). An alternative is provided by symplectic
integrators leading to better energy conservation (see Arendt and Shalchi 2018).

3. The last step is to ensemble average the obtained orbits to compute the diffusion pa-
rameters in the different directions of space. Furthermore, one can also obtain particle
distribution functions, mean square displacements, and velocity correlation functions. In
order to get results with high accuracy and to reduce noise, one has to perform such
simulations by using thousands of particles.

In the following we present a more detailed description of these steps and thereafter we show
numerical results together with a comparison with analytical results for different turbulence
configurations.

10.1 Generating the Turbulence

As described above, test-particle simulations are a common tool in the theory of particle
transport. In the following we summarize the method and employ the notation used before
in Hussein and Shalchi (2014a), Hussein et al. (2015), Hussein and Shalchi (2016) as well
as Arendt and Shalchi (2018). This approach, however, is based on previous papers such
as Giacalone and Jokipii (1999) as well as Tautz (2010b). The most common technique to
generate magnetic turbulence is to sum over a large number of plane waves with random
phases, polarizations, amplitudes, and orientations. In test-particle simulations the turbulent
magnetic field vector is created via

δB(x) =
√

2δB

N∑

n=1

A(kn)ξn cos[kn · x + βn] (10.1)

where N is the number of wave modes. The quantity A(kn) denotes the amplitude function
and is discussed below. In Eq. (10.1) we have also used the wave vector kn = knek,n with the

Isotropic, Gaussian Turbulence
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Fig. 16 Diffusion coefficients and distribution functions for pure slab turbulence, a magnetic rigidity of
R = 0.1, and a magnetic field ratio of δB2

slab/B2
0 = 1. The used parameters T , R, K‖, and D‖ are defined in

Eq. (4.83). In the upper left panel the solid line represents the test-particle simulations and the dotted line the
analytical formula (4.84) for K‖ = 0.043. In the upper right panel the solid line represents the test-particle
simulations and the dotted line the analytical formula (7.45) corresponding to time-dependent UNLT the-
ory. The bottom panels show parallel and perpendicular distribution functions for the different times T = 0,
T = 2500, and T = 5000. Shown are the simulations (solid lines) and Gaussian overlays (dashed lines).
Reprinted with permission from Springer—Arendt and Shalchi (2018)

In the numerical solution of Eqs. (10.12) and (10.13), one needs to specify several pa-
rameters as well. The initial time is usually set to zero but there is also a final time tmax.
This has to be chosen so that one finds the stable regime which is often the time where
the particles have reached diffusive behavior. In Figs. 16 and 17, for instance, the choice
was "tmax = 5000. Furthermore, the constant step size in the symplectic solver was set to
"#t = 10−3 meaning that the total number of time steps in such runs was 5 × 106.

The procedure explained so far has to be performed for a huge amount of particles to
obtain results with a high accuracy and in order to reduce the noise in the running diffusion
coefficients as much as possible. Often the number of particles is a few thousands but the
results visualized in Figs. 16 and 17 were created by using 12000 particles. That is the
point where parallel computing becomes a required tool so that the different particles can be
distributed among the different processors.

If particle trajectories are obtained numerically, the remaining step is the calculation of
the diffusion coefficients via mean square displacements. To do this, a diffusion coefficient
is preferably defined as the ratio of the corresponding mean square displacement and time
(see, e.g., Eq. (4.80) of this review) rather than the time-derivative (see, e.g., Eq. (5.27)).
This is entirely done with the purpose of reducing noise in the diffusion coefficient. If one is
more interested in the late-time limit and assuming that one indeed finds diffusive transport,
there is no difference between dividing by time and computing the time-derivative. However,
special care is required for anomalous transport where these two definitions do not yield the

Shalchi 2020
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Abstract

The propagation of cosmic rays in turbulent magnetic fields is a diffusive process driven by the scattering of the
charged particles by random magnetic fluctuations. Such fields are usually highly intermittent, consisting of intense
magnetic filaments and ribbons surrounded by weaker, unstructured fluctuations. Studies of cosmic-ray
propagation have largely overlooked intermittency, instead adopting Gaussian random magnetic fields. Using
test particle simulations, we calculate cosmic-ray diffusivity in intermittent, dynamo-generated magnetic fields.
The results are compared with those obtained from non-intermittent magnetic fields having identical power spectra.
The presence of magnetic intermittency significantly enhances cosmic-ray diffusion over a wide range of particle
energies. We demonstrate that the results can be interpreted in terms of a correlated random walk.

Key words: cosmic rays – diffusion – dynamo – magnetic fields

1. Introduction

Cosmic rays are charged relativistic particles (mostly
protons) scattered, as they propagate, by random magnetic
fields (Berezinskii et al. 1990). Over sufficiently long time and
length scales, their propagation is diffusive (Cesarsky 1980).
Assuming an interstellar magnetic field of strength 5 GN , the
Larmor radius rL of a cosmic-ray proton of energy 5 GeV is of
the order of 10 cm12 , much smaller than the correlation length
of interstellar MHD turbulence ( 10 cm20_ ). Thus, cosmic rays
closely follow field lines (for a significant time), and so the
geometry and statistical properties of magnetic fields control
their propagation. The dominant contribution to particle
scattering is from magnetic irregularities at a scale comparable
to rL. In this Letter, we mostly discuss cosmic rays that
propagate diffusively.

With some exceptions that are discussed below (see also
Alouani-Bibi & le Roux 2014; Pucci et al. 2016), studies of
cosmic-ray propagation employ random magnetic fields with
Gaussian statistics that are completely described by the two-
point correlation function or the power spectrum (e.g., Michalek
& Ostrowski 1997; Giacalone & Jokipii 1999; Casse et al. 2002;
Candia & Roulet 2004; Parizot 2004; DeMarco et al. 2007;
Globus et al. 2008; Plotnikov et al. 2011; Harari et al. 2014;
Snodin et al. 2016; Subedi et al. 2017). However, the interstellar
and intergalactic magnetic fields have a more complicated
structure. The fluctuation (small-scale) dynamo (Zeldovich
et al. 1990; Wilkin et al. 2007) and random shock waves
(Bykov & Toptygin 1987) produce highly intermittent, strongly
non-Gaussian, essentially three-dimensional magnetic fields with
random magnetic filaments and ribbons surrounded by weaker
fluctuations. Filamentary and planar structures in the interstellar
medium, consistent with the notion of spatial intermittency, have
been detected in the radio (Section 5.2 in Haverkorn &
Spangler 2013) and submillimeter (Zaroubi et al. 2015) ranges
as well as in the neutral hydrogen distribution (Heiles &
Troland 2005). In such a magnetic field, the propagation of
charged particles is controlled not only by its power spectrum,
but also by the size and separation of the magnetic structures.
The influence of such a complex magnetic field upon cosmic-ray
propagation is poorly understood. Existing theories, using the

quasilinear approach (Jokipii 1966; Berezinskii et al. 1990;
Schlickeiser 2002), or its nonlinear extensions and alternative
ideas (e.g., Vlad et al. 1998; Yan & Lazarian 2002; Matthaeus
et al. 2003; Shalchi 2009), do not consider intermittency, or use
the Corrsin hypothesis (Corrsin 1959), which assumes Gaussian
statistics for the magnetic field. Recent test particle simulations
used magnetic fields obtained from simulations of MHD
turbulence (e.g., Dmitruk et al. 2004; Reville et al. 2008;
Beresnyak et al. 2011; Lynn et al. 2012; Weidl et al. 2015; Cohet
& Marcowith 2016) (see also Roh et al. 2016). These models are
free from the assumption of Gaussian statistics, but they do not
consider any effects of magnetic structures even if those were
present. There have been no systematic attempts to examine the
significance of realistic, physically realizable magnetic inter-
mittency in 3D; this is our goal here. In intermittent magnetic
fields, particle trapping can be important even in 3D. We note
that the Kubo number, often used to delineate different transport
regimes, depends only on second-order correlations and is
therefore insensitive to intermittency.
We use test particle simulations (Giacalone & Jokipii 1999;

Casse et al. 2002; Desiati & Zweibel 2014; Snodin et al. 2016),
integrating the equation of motion for a large number of
particles in a statistically isotropic, prescribed magnetic field, in
the regime where cosmic-ray pressure is too low to excite
significant MHD waves. The magnetic field is obtained as a
solution of the induction equation with a prescribed velocity
field that drives the fluctuation dynamo. This produces a
realistic, intermittent magnetic field. The degree of intermit-
tency depends on the magnetic Reynolds number Rm. As Rm
increases, the magnetic structures occupy a smaller proportion
of the volume. The intermittency introduces two distinct
particle propagation regimes, one within a magnetic structure
and another between them. Cosmic-ray particles are strongly
scattered by the magnetic structures and move relatively freely
between them. By comparing particle diffusion in an
intermittent field with that in a magnetic field lacking structure,
but with an identical power spectrum, we demonstrate that
intermittency can significantly enhance diffusion, and so
diffusion cannot be described in terms of the power spectrum
alone.
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2. Magnetic Field Produced by Dynamo Action

We generate intermittent, statistically isotropic, fully three-
dimensional random magnetic fields b by solving the induction
equation with a prescribed velocity field u:

b
u b b b

t
R , 0, 1m

1 2s
s

� � q q � � � ��( ) · ( )

with periodic boundary conditions in a cubic domain of width
L 2Q� and 2563 or 5123 mesh points. Equation (1) is written in
a dimensionless form, expressing length in the units of the flow
scale l0 and time in the units of l u0 0, where u0 is the rms flow
speed. Here, R l um 0 0 I� is the magnetic Reynolds number3

and η is the magnetic diffusivity, assumed to be constant. In a
generic, three-dimensional, random flow, dynamo action occurs
(i.e., the mean magnetic energy density grows exponentially with
t) provided R Rm m,c� , where Rm,c is the critical magnetic
Reynolds number (Zeldovich et al. 1990). Depending on the
nature of the velocity field, typically R 10m,c � –100, and the
magnetic field decays for R Rm m,c� (Brandenburg & Sub-
ramanian 2005). As Rm l d, the magnetic structures produced
by the dynamo become progressively more filamentary in nature,
with the thickness of each filament of the order of d l R0 m

1 2� �

and a characteristic filament length (radius of curvature) of the
order of l0 (Zeldovich et al. 1990; Wilkin et al. 2007). The
magnetic field used in our simulations is an eigenfunction
obtained by renormalizing the exponentially growing solution of
Equation (1) to have a constant rms field strength b0. We expect
the magnetic structure of the corresponding nonlinear dynamo
to be similar to that of the marginal eigenfunction obtained
at R Rm m,cx (Subramanian 1999). However, we consider a
wider range of Rm to explore the effects of a variable degree
of intermittency: it increases with Rm. To isolate robust features
of cosmic-ray propagation independent of the particular form of
intermittent magnetic field, we use two types of incompressible
flow to drive the dynamo, both chaotic, but one of a single scale
and the other multi-scale with a controlled power spectrum. The
first flow (Willis 2012), henceforth referred to as flow W, is
stationary:

u x y z z x x y2 3 sin cos , sin cos , sin cos . 2�( ) ( )( ) ( )
It is a very efficient dynamo with R 11m,c x , producing
regularly spaced magnetic structures in the form of ellipsoids of
identical size that become thinner as Rm increases and whose
positions are determined solely by the flow geometry (so are
independent of Rm). The second flow (KS) is time-dependent
and multi-scale; it was employed for dynamo simulations
(Wilkin et al. 2007) and as a Lagrangian model of turbulence
(Fung et al. 1992):

u x C Dt, cos sin , 3
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where k x tn n nG X� �· , with kn a randomly oriented wave
vector (of magnitude kn) and nX a frequency specified below.
The random vectors, Cn and Dn, are chosen to be orthogonal to
kn to ensure u 0� �· . We select N=40 distinct wave

vectors, with magnitudes between k L20 Q� and k k8N 1 0x� ,
so that the flow is periodic with the outer scale l L0 � . The
amplitudes of Cn and Dn are selected to produce an energy

spectrum E k k 5 3r �( ) with E k dk u 2
k

k
0
2N

0

1

¨ �� ( ) . We take

k E kn n n
3 1 2X � [ ( )] , which introduces a scale-dependent time

variation. The dynamo in this flow has R 1000m,c x (Wilkin
et al. 2007). The flow produces transient magnetic structures,
consisting of filaments of various sizes, as illustrated in the
leftmost panel of Figure 1.
To identify the effects of magnetic intermittency on cosmic-

ray diffusion, we also consider random magnetic fields where
the structures have been destroyed but the magnetic energy
spectrum remains unchanged (Snodin et al. 2013). This is
achieved by taking the spatial Fourier transform of b x( ) from
Equation (1) and then multiplying each complex Fourier mode
by kiexp Z[ ( )], with kZ ( ) a random phase selected indepen-
dently for each k. The inverse Fourier transform of the result
produces a magnetic field with an unchanged spectrum but with
little remaining structure, as demonstrated in the second from
left panel of Figure 1. As shown in the second from right panel
of Figure 1, the probability density functions (PDFs) of the
field components for the intermittent fields produced by each
flow (W and KS) have long, heavy tails, while the phase
randomization produces nearly Gaussian random fields.
Another aspect of this difference is also illustrated in the
rightmost panel of Figure 1 where the fractional volume
occupied by magnetic structures with b b0 O� is shown as a
function of ν: an intermittent magnetic field has more strong,
localized structures with 1.42O than a Gaussian field with an
identical power spectrum.
To explore the effects of a mean magnetic field, we also

consider particle propagation in a magnetic field given by
B b B0� � , where B0 is an imposed uniform magnetic field.
In such cases, the rms magnetic field b0˜ quoted below includes
the mean part, b B b0

2
0
2

0
2� �˜ .

3. Cosmic-ray Propagation

Using magnetic field realizations generated from
Equation (1), or the corresponding randomized magnetic fields,
we obtain an ensemble of cosmic-ray trajectories ( 1000. in
number) by solving numerically the dimensionless equation of
motion for the particle trajectories x t( ),

x x B x¨ , 4B� q˙ ( ) ( )
with ql b mcv0 0 0B H� ˜ ( ), q the particle charge, m its rest mass,
b0˜ the total rms field strength, γ the Lorentz factor, v0 the
particle speed, and c the speed of light. As in most cosmic-ray
propagation models (Berezinskii et al. 1990; Schlickeiser 2002;
Shalchi 2009), we neglect electric fields in Equation (4): they
are negligible at the scales of interest ( 1 kpc� in galaxies and

10 kpc� in galaxy clusters). Hence, the particle speed v0
remains constant. Each particle is given a random initial
position and propagation direction, but the same initial speed.
The characteristic dimensionless Larmor radius, based on the
rms magnetic field strength, is r l ;L 0

1B� � we use this ratio to
characterize the particle properties. When B 00 � , we calculate
the isotropic diffusion coefficient x t tlim 6t

2L � � % §ld ∣ ( )∣ ( ),
where x t% ( ) is the particle displacement, and the angular
brackets denote averaging over particle displacements. In the

3 Some authors define Rm in terms of the wavenumber k0, resulting in Rm
values a factor of 2Q smaller.
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presence of a mean magnetic field directed along the z-axis, we
introduce similarly defined parallel and perpendicular diffusion
coefficients, which are given by z t tlim 2t

2L � �% §ld& ( ) ( )
and L �? x t y t tlim 4t

2 2� % � % §ld [ ( ) ( ) ] ( ).

4. Cosmic-ray Diffusivity

Figure 2(a) shows the dependence of the cosmic-ray
diffusion coefficient on r lL 0 (proportional to the particle
energy) for B 00 � . For r l 1L 0 � , we recover the asymptotic
scaling rL

2L r (high energy limit) in agreement with earlier
results (Parker 1965; Aloisio & Berezinsky 2004; Parizot 2004;
DeMarco et al. 2007; Globus et al. 2008; Beresnyak et al. 2011;
Plotnikov et al. 2011; Harari et al. 2014; Snodin et al. 2016;
Subedi et al. 2017). At lower energies, the dependence of κ on
particle energy is weaker and is sensitive to magnetic structure.
Magnetic intermittency is expected to be important at those
energies where

r l 1, 5L 0 1 ( )

and the dependence r lL 0L ( ) in Figure 2(a) indeed deviates
from the asymptotic form in this range. The role of magnetic
intermittency is demonstrated in Figure 2(b), showing the ratio
of the diffusivity κ calculated with a dynamo-generated
magnetic field to that in the corresponding randomized field,

RL (B 00 � in panels (a) and (b)). At high energies (large
r lL 0), 1RL L � , suggesting that the magnetic structures play
an insignificant role. However, RL L increases rapidly up to
more than 2.5 at lower energies: magnetic structures enhance
diffusion when inequality(5) is satisfied. We find that the ratio

RL L at fixed r lL 0 increases with Rm for a given flow. At high
values of r lL 0, the diffusivity still depends on Rm via changes
in the magnetic correlation length (Figure 2(a)), but not via the
Rm-dependent intermittency, as suggested by Figure 2(b),
where RL L tends to unity as r lL 0 increases. One might expect
a change in the diffusivity behavior at r l RL 0 m

1 2x � ,
associated with the thickness of magnetic filaments, and this
may explain the variation in slope of κ at low r lL 0 in

Figure 2(a) (or the ratios in Figure 2(b)). However, at present,
the role of this scale is unclear.
Figure 2(c) illustrates the effects of the mean magnetic field,

presenting the ratio of the parallel and perpendicular

Figure 1. Isosurfaces of magnetic field strength b b 2.52
0
2 � (blue) and b b 52

0
2 � (yellow) with b0 the rms magnetic field, for magnetic field generated by the KS

flow (3) at R 1082m � (left) and for the same magnetic field after Fourier phase randomization as described in the text (second from left). Magnetic field generated by
the W flow (2) is similarly affected (not shown). The second from right panel shows the PDFs of a magnetic field component bx for the original (KS, W: solid) and
randomized (KS (R), W (R): dashed) magnetic fields obtained with both velocity fields (only b 0x � is shown as the PDFs are essentially symmetric about bx=0).
The randomized fields have almost perfectly Gaussian statistics, whereas magnetic intermittency leads to heavy tails. The panel on the right shows the fractional
volume within magnetic structures where b b0. O , with b0 the rms field strength, as a function of ν for the intermittent magnetic field produced by the flow (3) (solid
for R 3182m � and dashed for R 1082m � ) and its Gaussian counterpart (dashed–dotted for R 3142m � and 1082) obtained by Fourier phase randomization; the
filling factor of the randomized fields is independent of Rm.

Figure 2. (a) Cosmic-ray diffusion coefficient for the W flow (2) (red,
magenta) and the KS flow (3) (blue, green) as a function of r lL 0 for the values
of Rm given in parenthesis in the legend. The dotted–dashed line shows the
scaling rL

2L r and rLL r , respectively. (b) The ratio of diffusion coefficients
from intermittent, κ, and randomized, RL , magnetic fields for the two flows
(solid lines, KS with R 3182m � , W with R 314m � ). The dashed lines of the
same color show the corresponding CRW model, Equation (7). (c) As in (b),
but in the presence of a mean magnetic field B0, of the relative strength
specified in the legend, for the KS flow with R 3182;m � L& and L? are shown
as solid and dashed lines, respectively.
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Synthetic Turbulence
Spectra and structure function exponent scaling



Ideas using ’Minimal Lagrangian Map’
Following Subedi et al. 2014

The Astrophysical Journal, 796:97 (10pp), 2014 December 1 Subedi et al.

Figure 2. Fluid particles for a particular filtering level, shown on the regular
grid with the arrows representing the velocities of the fluid parcel at each node.
(A color version of this figure is available in the online journal.)

particles at each grid point. In Figure 3, the fluid particles are
shown displaced from their original positions, and the velocities
are interpolated back to the regular grid (small dots) using a
weighted average over the area (shown as a circle with radius
R in the two-dimensional figure) surrounding each grid point.
Further details are presented in the Appendix.

3. EXTENSION OF THE PROCEDURE TO A PLASMA

While considering the extension of the procedure to a plasma
system, we are particularly interested in the generation of a syn-
thetic magnetic field in addition to the turbulent velocity field.
One possibility would be to simply generate two independent
fields and take one to be the velocity field and the other to be
the magnetic field. However, in this approach, we would be ne-
glecting the coupling between the two fields in a plasma system.
The induction equation of magnetohydrodynamics is

∂b
∂t

= ∇ × u × b + µ∇2b, (5)

where b is the magnetic field and µ is the resistivity. In ideal
MHD, and for a solenoidal velocity, the induction equation
becomes

∂b
∂t

+ u · ∇b = b · ∇u. (6)

According to this ideal equation (Choudhuri 1998), the magnetic
field is advected along with the fluid parcels and stretched. For
a simple application of the MMLM procedure to a magnetic
field, we base the procedure on advection only. Accordingly,
we employ the following Lagrangian mapping equation for the
magnetic field:

b(x, t) = b(a, 0), (7)

where the relation between a and x is given by Equation (4).
That is, the Lagrangian transport of the magnetic field is due to
the local value of the fluid velocity only. Furthermore, as in the
mapping of the velocity itself, the velocity is approximated as
uniform over space and time in the region spanned by the local

Figure 3. Fluid particles after being displaced from their original positions.
Smaller dots represent the regular grid points. The velocities are interpolated
back to each regular mesh point by using a weighted average over a sphere of
radius R centered around the mesh point.
(A color version of this figure is available in the online journal.)

mapping operation. Note that the velocity and magnetic fields
are specified independently, but could be correlated.

We may outline the magnetic implementation of the MMLM
procedure as follows. The initial setup and notation is the same
as that discussed in Section 2. We now have two independent
fields to begin with, which are filtered sequentially to different
scales. At each level the Lagrangian mapping is applied at every
node, which displaces the fluid parcels to the irregular grid,
employing the velocity at that node, as shown in Figure 2.
The magnetic field at each node is also assumed to be carried
along with the fluid parcel with the velocity at that node and,
after its transport onto the irregular grid, both magnetic and
velocity fields are interpolated back to the regular grid using the
averaging procedure schematically illustrated in Figure 3. More
details are presented in the Appendix.

Here we would like to allude to a complication that arises
from the coupling of the velocity and magnetic fields in MHD.
The momentum equation for a plasma is

∂u
∂t

+ u · ∇u = −∇
(

P +
b2

2

)
+ b · ∇b + ν∇2u, (8)

which means that the velocity field is also dependent on
the magnetic field, even in the absence of fluid interactions.
However, in the current procedure, we regard the velocity as
being independent of the magnetic field, with the magnetic field
being advected passively along with the fluid. We will return to
this issue in the Section 7.

4. INTERMITTENCY ANALYSIS OF SYNTHETIC FIELDS

In this section, we perform statistical analysis of a sample
velocity and magnetic field generated using the MMLM pro-
cedure. We initialize the fields with random phases (Gaussian
components) on a discrete mesh, following the procedure de-
scribed above. We use 5123 nodes, and up to M = 7 levels of
filtering and mapping are employed. The spectrum has a −5/3
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Comparison of Methods
MHD with stochastic driver vs synthetic methods

Figure 1: Visual comparison of the turbulence models under consideration. Shown is a slice of Bx at
x = 0.

Figure 2: Comparison of the running diffusion coefficients h~x0 � ~x(t)i/t (left) and the converged diffu-
sion coefficients, averaged over t/Tg = 104 · · · 106 (right).
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Comparison of Methods
Particle Orbits (black) and Field Lines (red) in MHD and Random Phase Field

MHD Random Phases



Comparison of Methods
Results for the diffusion coefficients

Figure 1: Visual comparison of the turbulence models under consideration. Shown is a slice of Bx at
x = 0.

Figure 2: Comparison of the running diffusion coefficients h~x0 � ~x(t)i/t (left) and the converged diffu-
sion coefficients, averaged over t/Tg = 104 · · · 106 (right).
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Transport in Parker background field





CME Snapshots from SWMF Code (M. Jin)



Summary
• Two approaches to particle transport: Fokker-Planck formulation (diffusion) or full orbit test-

particle calculations

• Particle transport in synthetic turbulent fields has been studied extensively with numerical 
methods in the past

• Often issues with limited resolution and energy conservation, only periodic boxes

• Almost always relying on random phase approximations -> no correlations and intermittency 
in synthetic turbulence

Particle transport and (synthetic) turbulence

Figure 1: Visual comparison of the turbulence models under consideration. Shown is a slice of Bx at
x = 0.

Figure 2: Comparison of the running diffusion coefficients h~x0 � ~x(t)i/t (left) and the converged diffu-
sion coefficients, averaged over t/Tg = 104 · · · 106 (right).
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Upcoming work

• Study cases for isotropic and anisotropic synthetic turbulence 
and MHD turbulence as benchmark

• Extend to intermittent fields and study energy dependence of 
diffusion. Non-diffusive regimes (super- and subdiffusion)?

• Work on embedding in large scale background field, e.g.
Heliospheric Parker spiral field, Galactic field


