

Probing the intergalactic magnetic field through gamma-ray observations

Paolo Da Vela

paolo.davela@inaf.it

Magnetic Fields in galaxies

Borlaff et al. 2021

On the nature of the seed fields

- The nature of the seed fields is largely unknown. Two main hypothesis on their origin:
 - I. the astrophysical scenario
 - II. The cosmological scenario
- Observationally we need measurements of magnetic fields in the intergalactic medium

The Intergalactic Magnetic Field

(intensity)

B

- The IGMF is characterized by the fields strength and the correlation length
- Standard techniques can exclude only a small portion of the (B, λ_B) plane
- We need a more sensitive technique

Extended emission

 Observable effect: extended emission around the point source. The angular extension grows with increasing IGMF

• Two regimes:

The detection of the extended emission would allow a direct measure of the IGMF strength

Extended emission: expectations

- Source: 1ES 0229+200 (blazar)
- Redshift: z=0.14
- Correlation length $\lambda_{B} = 1 Mpc$
- Spectrum: powerlaw -1.5, E_{max}= 5 TeV
- E > 1 GeV

Extended emission: observations

- The extended emission can be searched in the GeV domain (Fermi/LAT) and in the VHE band (E > 50 GeV) with Cherenkov telescopes
- In spite of several attempts no detection has been claimed up to now in both energy bands

Extended emission: observations

- The extended emission can be searched in the GeV domain (Fermi/LAT) and in the VHE band (E > 50 GeV) with Cherenkov telescopes
- In spite of several attempts no detection has been claimed up to now in both energy bands

Spectral features

 Measuring the amount of absorbed flux of a TeV blazar we can predict the amount of cascade emission. Its suppression depends on the IGMF strength and correlation length

What are the most promising sources?

• We need hard VHE (E>50 GeV) spectra

• Spectra that reach the highest energies

• "Proper" redshift (z > 0.1)

Among the different classes of blazars the most promising sources are the Extreme High frequency BL Lac Objects (EHBL)

Blazar sequence and EHBL

- EHBL populate the low luminosity branch of the blazar sequence
- Observationally they are characterized by a high X-ray to radio flux ratio
- They come in two different flavors: extreme-synchrotron and extreme-TeV sources

Blazar sequence and EHBL

- EHBL populate the low luminosity branch of the blazar sequence
- Observationally they are characterized by a high X-ray to radio flux ratio
- They come in two different flavors: extreme-synchrotron and extreme-TeV sources

The case of 1ES 0229+200

- VHE instrinsic spectrum with index ~ 1.8 that extends above 1 TeV
- Redshift: z=0.14
- No evidence of cutoff in the VHE spectrum

Spectral features

- First attempt performed by Neronov and Vovk 2010:
 - 4 blazars selected from the first year of Fermi/LAT operation
 - Redshift: z > 0.1
 - Hard TeV spectra

 $B \ge B_{PSF} \simeq 3 \times 10^{-16} G, \quad \lambda_B \gg D_e$

The intrinsic VHE spectrum

- In order to predict the cascade spectrum the choice of the intrinsic VHE spectrum is crucial
 - Minimal expected cascade estimate
 - SED modeling
 - Marginalization over all possible VHE spectra

Taylor et al. 2011

Tavecchio et al. 2011

The duty cycle of the source

- The limits on IGMF depend on the assumption about the timesscale of the VHE lifecycle of the source (and on its flux level...)
 - → Several studies suggest t_{cycle}=10⁶-10⁹
 - ➔ Safest approach: VHE time span

IGMF constraints from Fermi/LAT and HESS observations

• Total likelihood:

H.E.S.S. and Fermi-LAT coll. 2023

$$\mathscr{L}(B,\theta_i|\mathcal{D}_i) = \mathscr{L}(B,\theta_i|\mathcal{D}_{i,LAT}) * \mathscr{L}(B,\theta_i|\mathcal{D}_{i,HESS})$$

Scanning all the parameter the best fit is evaluated \rightarrow the presence of cascade is not preferred with respect to the case of "no cascade"

IGMF constraints from Fermi/LAT and HESS observations

• Loglikelihood ratio test:

$$\lambda(B) = -2\sum_{i} \ln\left(\frac{\mathscr{L}(B, \hat{\theta}_{i} | \mathcal{D}_{i})}{\mathscr{L}(\hat{B}, \hat{\theta}_{i} | \mathcal{D}_{i})}\right)$$

What about the variability of the source?

- The lower bound derived by Fermi coll. relies on an (unverified) assumption of stability of the TeV band flux on decade time span
- Blazars are variable sources

A more reliable lower bound can be obtained taking into account the variability pattern of the source in the VHE band that can be inferred from the observations

A lower bound on IGMF from the variability of 1ES 0229+200

- MAGIC data sample: September 2013

 December 2017. Totally we collected about 140 hours of data
- The joint spectrum is described by a simple EBL absorbed power with Γ =1.74±0.05 and E_{cut} > 10 TeV
- No variability found below 100 GeV using 12 years of data (Fermi/LAT)
- Joint VHE lightcurve: the constant flux fit is discarded at 4.8 σ level
- Variability time scale of 500 days

VHE spectrum: minimal expected cascade estimate

 Following the approach of Neronov et al. 2010 we looked for the softest spectrum and with the lowest E_{cut}

$$\frac{dN}{dE} \propto \left(\frac{E}{E_0}\right)^{-\Gamma} \exp\left(-\frac{E}{E_{cut}}\right)$$

• We took the values of E_{cut} and Γ that lie in the 90% of confidence contour and that give the minimum cascade power: Γ 1.72, E_{cut} 6.9 TeV

Numerical modeling of cascade emission

- We used CRPropa to trace the development of the cascade in the intergalactic medium.
- Source model: Powerlaw with exponential cutoff, jet emission within a cone of 10 deg
- $G(E_0, E, t, B, \lambda)$ Green function, $F_s(E_0, t)$ variability pattern of the source in the VHE band. The cascade signal $F_c(E, t)$ above a certain energy E is given by:

$$F_c(E,t) = \int_0^\infty \int_E^\infty G(E_0, E, t - \tau, \tau) F_s(E_0, \tau) dE_0 d\tau$$

Lightcurves: fit results

- The variability pattern F_s is inferred from the VHE lightcurves
- The suppression of the signal is entirely due to the diluition in time (the signal is well within the PSF)
- For B=10⁻¹⁶ G and λ =1 Mpc the cascade is almost suppressed in all energy bands so that we cannot 27 exclude this particular IGMF configuration

Lightcuves: fit results

MAGIC coll. 2023

 $B > 1.8 \times 10^{-17} G$

- We performed a scan in the (B, $\lambda_{\rm B}$) space in order to look for the IGMF configurations rejected by the data.
- The energy band in which we are most sensitive to the delayed emission is 1-10 GeV

95 % confidence level

Results

- The derived lower bound is weaker than the one reported by H.E.S.S. and Fermi LAT coll.
- VHE variability of the source is taken into account
- The detection of 10 yr delayed signal for z~0.1 requires systematic monitoring in both TeV and 1-100 GeV bands

29

Pair echo emission from GRB

GRB 190114C

- GRB 190114C was triggered by Swift-BAT on 14 January at $T_0=20:57:03$ UT
- Most of the prompt emission within $\sim 25 \text{ s}$
- Afterglow onset at ~ 6 s after T₀ (Ravasio et al. 2019)
- $E_{\gamma,iso} \approx 2 \times 10^{53}$ erg in the E=1-10⁴ keV
- Z≃ 0.42
- $T_{\text{activity, VHE}} \simeq 40 \text{ m}$

IGMF lower bounds from GRB 190114C

- Analytic approach
- EBL models tested: Finke et al. 2010, Dominguez et al. 2011, Gilmore et al. 2012 → results do not change much
- Intrinsic spectral shape in the VHE band: power law index 2 up to 1 TeV and 15 TeV
- Flux above 200 GeV extrapolated up to T_0 =6s (about factor of 5 the flux measured by MAGIC from T_0 =64 s)
- Result: $B \gtrsim 3 \times 10^{-20}$ G for $\lambda_B \lesssim 1$ Mpc

IGMF lower bounds from GRB 190114C

- Reconstruction of the VHE intrinsic spectrum fitting the data
- Assumed model: powerlaw with an exponential cutoff
- Different EBL normalization assumed: 70%, 80%, 90%
- EBL: Gilmore et al. 2012
- Elmag3 used to trace the development of the cascade emission

IGMF lower bounds from GRB 190114C

No constraints on IGMF can be derived

Primary spectrum

MAGIC coll. 2019

 We used the GRB 190114C model in the MAGIC band (200GeV<E<10 TeV) in the first temporal bin (68-110 s) approximated it with a log-parabola

$$\frac{dN}{dE} \propto \left(\frac{E}{E_0}\right)^{-2.5 - 0.2 \log(E/E_0)}$$

The normalization has been fixed extrapolating the flux up to the first 6 s after T_0

$$\langle F \rangle_{6-2454} = \frac{\int_6^{2454} F(t)dt}{\Delta t}$$

Starting time

• We started to count the cascade photons at $T-T_0=2\times10^4$ s to avoid possible contamination of the primary emission coming from the source

CRPropa simulations: settings

- Source:
 - Point source
 - Z=0.42
 - Logparabola spectrum between 200 GeV and 10 TeV, 10⁶ primary photons
 - Minimum energy of cascade photons: 0.05 GeV
 - Emission cone: 10°
- Magnetic Field:
 - Turbulent magnetic field with a Kolmogorov spectrum and different $B_{\rm rms}$
 - Correlation length: > 1 Mpc
- Observer:
 - Sphere with radius 1.6 Gpc with the source at the center

Pair echo SEDs vs observation time

Can we study the lowest delays...?

- Vovk (2023) studied the evolution of the cascade
- The lowest magnetic field that can be tested is the one which induces angular deflections on the pairs lower than their intrinsic aperture (B≈10⁻²¹ G)
- VHE spectrum: Powerlaw up to 10 TeV has been assumed
- The cascade lightcurve for B<10⁻²¹ G is compatible with the data...

Vovk 2023

However...

• What happens when $T-T_0 > 10^4$ s?

Performing the Fermi LAT analysis after $T-T_0$ this prediction is not compatible with the upper limit \rightarrow this extreme scenario seems to be disfavored

Conclusions and Outlook

- The study of the IGMF through gamma-ray emission from extragalactic sources is a powerful instrument
- Plasma instabilities: the presence of plasma instabilities can suppress the production the cascade emission.
- <u>Spectral features</u>: some assumptions on the features of the selected blazars are crucial:
 - Lifcycle of the source
 - Variability
 - Choice of the VHE spectrum
- <u>Pair echo from GRBs</u>: the time activity (in the VHE band) and the time evolution of the VHE emission of the prompt play an important role and need to be considered
- <u>Extended emission</u>: no detection so far
- Future perspectives:
 - Lahaso GRB...
 - CTA: new EHBL candidates, better angular resolution

Back up

Extended emission: expectations

- The shape of the halo depends also on the inclination of the jet:
 - Monchromatic photons E=1 TeV
 - Redshift: z≃0.1
 - Jet opening angle: $\Theta_{jet} = 3^{\circ}$
 - Correlation length $\lambda_{\text{B}} > 1$ Mpc
 - IGMF strength: $B = 10^{-16} G$

45

Extreme High frequency BL-Lac (EHBL)

Pair echo emission detection vs GRB distance

- We assumed the same intrinsic properties as GRB 190114C:
 - VHE spectral shape
 - $L_{\gamma, iso}$
- We repeated the same procedure assuming z=0.2, 1

- So far the cascade emission has always been studied in the GeV domain
- Extending the observation of GRBs in the VHE (e.g. CTA North) band for at least 3 hours could lead to the detection of the pair echo or to exclude some IGMF configurations
- Assuming the same intrinsic properties of GRB 190114C and considering different distances we proved that the distance plays a more crucial role than the cascade power
- Next steps:
 - role of other parameters
 - Pair echo emission from a suitable GRB sample for CTA
 - Accurate predictions for CTA

Normalization and PSF

