

Time dependent particle injection to investigate the local source behaviour of flaring AGN CRPropa Workshop 2023

L. Schlegel, J. Becker Tjus, M. Schroller, L. Merten, J. Dörner, E. Kun

Time dependent particle injection to investigate the local source behaviour of flaring AGN - current status CRPropa Workshop 2023

L. Schlegel, J. Becker Tjus, M. Schroller, L. Merten, J. Dörner, E. Kun

Introduction **Motivation**

(Kun et al, 2021)

leander.schlegel@ruhr-uni-bochum.de

Project overview Time dependent SED modeling

- Leptohadronic SED modeling.
- Using AGNpy + (AGN)CRPropa.
- Using time dependent particle injection to model flares also in time domain accurately.
- In the application, at later stage three different time-scenarios and the correlated SEDs are going to be tested for the source TxS0506+056.

Source parameters

Numerical codes **AGNpy to model leptonic AGN Emission**

- blobs in AGN jets.
- After (Dermer, Menon 2009) the leptonic modeling of Synchrotron and SSC can be described by

$$f_{\epsilon}^{\text{syn}} = \frac{\delta_{\text{D}}^{4} \epsilon' J_{\text{syn}}'(\epsilon')}{4\pi d_{L}^{2}} = \frac{\sqrt{3}\delta_{\text{D}}^{4} \epsilon' e^{3}B}{4\pi h} \int_{1}^{\infty} d\gamma' N_{e}'(\gamma) d\gamma' N_{e}'(\gamma$$

$$f_{\epsilon_s}^{\rm SSC} = \frac{9}{16} \frac{(1+z)^2 \sigma_{\rm T} \epsilon_s^{\prime 2}}{\pi \delta_{\rm D}^2 c^2 t_{v,\rm min}^2} \int_0^\infty d\epsilon' \frac{f_{\epsilon}^{\rm syn}}{\epsilon'^3} \int_{\gamma_{\rm min}'}^{\gamma_{\rm max}'} d\gamma' \frac{N_e'(\gamma')}{\gamma'^2} F_{\rm C}(q,\Gamma).$$

AGNpy (Nigro et al. 2022) provides a python steerable framework for the calc. of leptonic emission processes of relativistic

') R(x)

(https://agnpy.readthedocs.io/en/latest/index.html)

Numerical codes

AGNpropa to model hadronic AGN Emission CRPropa 3 Jet model

(Alves Batista et al. 2016)

Scalings + Modifications

(After Hörbe et al. 2020)

(Hörbe et al. 2020)

Local source model **Blazar-Jet**

The local source model developed by (Hörbe et al. 2020) consists of

Relativistic plasmoid of primaries travelling along jet axis.

Turbulent magnetic field leading to diffusion.

Local target fields (Proton plasma, Accretion disc field, Synchrotron radiation field).

Relevant interaction processes:

- 1) Synchrotron radiation of primaries
- Photohadronic: $p/n + \gamma \rightarrow \pi^{0/\pm} + X$ 4) Hadronic: $p + p \rightarrow \pi^{0/\pm} + X$ 3)

CRPropa Workshop - 26.9.23

2) EM-Pair Production: $\gamma + \gamma \rightarrow e^+ + e^-$

(Hörbe et al. 2020)

Local source model Scaling functions

With the **separation-ansatz** $n_{\gamma}(e_{\gamma}, r) = n_{\gamma,0} \cdot S(r)$ the target fields densities can be implemented as (spatial) fields and (temporal) scalings, that allow the modelation of the **changing environment during propagation** along the jet-axis.

From geometric considerations the scalings read (Hörbe et al. 2020)

$$B(r) \propto r^{-1} \qquad n_{Plasma}(r) \propto r^{-2}$$
$$S_{disc}(r) \propto \ln \frac{R_{acc}^2 + r^2}{(3R_s)^2 + r^2} \qquad S_{synch}(r) \propto r^{-\left(\frac{1+\alpha_e}{2}\right)}$$

For each case the Lorentz-trafo has to be considered.

(After Hörbe et al. 2020)

Local source model Multimessenger results from the AGN model

- **Reproduction** of the results from (Hörbe et al. 2020).

The time-evolution of the flares shows steep increases (around 1 day) and long decreases (up to 0.3 years).

Timescales of flares regarding the increase-time and symmetry **typically too short compared to observed flares**.

- Multi-Messenger information (p,n, ν,γ) is shown in temporal evolution.
- Each messengers is tagged by interaction.
- ν -flare visible, corresponding to minimum in γ -flux.

(After Hörbe et al. 2020)

- Most codes assume instantaneous primary injection in time.
- Generally, arbitrary source injection-times would demand for: $S(t) = S_0 \cdot \delta(t t_0) \rightarrow S(t) = S_0 \cdot f(t)$
- \bullet describing a luminosity profile.

This can be **realized by setting the primaries trajectory-length** l_{traj} upon injection via MC-Sampling from the PDF f(t),

To distribute particles injection times according to a certain luminosity • profile, Monte-Carlo Sampling is used.

$$CDF(x) = \int_{-\infty}^{x} dx' p df(x')$$
 $r = c df^{-1}(u), u \in [0, 1]$

• For the **exemplary case of the normal distribution** we get:

$$PDF(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp^{-\left(\frac{x-\mu}{\sigma}\right)^2 \cdot \frac{1}{2}} \qquad CDF(x) = \frac{1}{2} \left(1 + erf\left(\frac{x-\mu}{\sqrt{2\sigma}}\right)^2\right)$$

$$x = \sqrt{2} \cdot \sigma \cdot erf^{-1} \left(2 \cdot CDF(x) - 1 \right) + \mu$$

- Implemented both in AGNPropa source code and as a Python-Plugin, for now two profiles are available.
- $f_{box}(t) = \Theta(t t_{start})\Theta(t_{end} t)$ $f_{normal} = G(\mu, \sigma)$

CRPropa Workshop - 26.9.23

- Exemplary demonstration using AGN model setting similar to (Hörbe et al. 2020).
- Plot shows temporal evolution of all messengers for **Burst-injection** $f_{burst}(t) = \delta(t 0 s)$

- Exemplary demonstration using AGN model setting similar to (Hörbe et al. 2020).

CRPropa Workshop - 26.9.23

Left shows timeprofile for Box-injection, right shows time-profile for Gaussian-injection. Emitted energy is kept constant.

leander.schlegel@ruhr-uni-bochum.de

- Exemplary demonstration using AGN model setting similar to (Hörbe et al. 2020).
- Plots shows temporal evolution only of γ -flux (pp (left), pp+p γ (right)) for **finite Box-injection** for different times.

CRPropa Workshop - 26.9.23

CRPropa Workshop - 26.9.23

- **Stronger temporal correlation** between ν and γ fluxes for larger injection times.

Left shows temporal correlation of normalized ν and γ fluxes for Burst- and finite Box-injection for different times.

Right shows temporal correlation of normalized ν and γ fluxes for Burst- and **finite Gaussian-injection** for different times.

Modifications Low-energy extension

- Furthermore, interactions are highly boosted in the lab-frame.
- To model the low-energy part of the SED below the rest-mass of the primaries, a low-energy extension is necessary.
- proper time was introduced in the **Candidate-object**.
- The Lorentz-force implementation with \vec{u} denoting the normalized direction of the velocity $\vec{v} = v \cdot \vec{u}$ reads \bullet

$$\frac{d\overrightarrow{u}}{dt} \cdot c = \frac{q \cdot c^2}{E} \cdot c \cdot \overrightarrow{u} \times \overrightarrow{B} \to \frac{d\overrightarrow{u}}{dt} \cdot c \cdot \beta = \frac{q \cdot c^2}{E} \cdot c$$
with the relativistic factor $\beta = \frac{v}{v} = \sqrt{1 - \frac{1}{\left(\frac{E_{kin}}{mc^2} + 1\right)^2}}$

CRPropa is designed for highly-relativistic energies only, implying v = c and in consequence $d = c \cdot t$ can always be assumed.

Two modification were made, the PropagationCK-module was adapted to calculate the Lorentz-force with the relativistic β and a

 $c \cdot \beta \cdot \overrightarrow{u} \times \overrightarrow{B}$

Modifications Low-energy extension

CRPropa Workshop - 26.9.23

In a minimal test-setup, a single proton is propagated in an isotropic magnetic field $\vec{B} = B \cdot \vec{e_z}$ a trajectory length $D = 2 \cdot \pi \cdot r_g$ for different energies in the range $[10^4, 10^{11}] \text{ eV}$. The relativistic gyroradius reads $r_g = \frac{\gamma m v_{\perp}}{qB}$.

Propagation chain From source to signal

- The local source results need to be propagated further till they reach the observer.
- The in-jet-propagation is for now neglected.
- The transformation into the observer-frame reads $\epsilon = -$

$$\frac{\epsilon' \cdot \delta(\Gamma_j)}{(1+z)} \text{ and } D = \frac{D'}{\Gamma_j}.$$
Sformation observer-frame
$$\longrightarrow \quad \text{Extragalactic Propagation} \quad \text{Observer} \quad \text{Observ$$

Outlook Application to the TxS0506+056 2017 gamma ray flare

CRPropa Workshop - 26.9.23

(prelim modeling, not possible as is)

Summary and Outlook From AGN simulations to flares of finite source lifetime

- also usable with CRPropa 3.2.
- local code AGNpropa, an implementation in CRPropa 3.2 would be possible.
- Currently, working on the SED modeling for the TxS0506+056 source.
- calculated as an estimate for possible CR emission of flaring AGN.

A feature for time dependent particle injection was implemented in our local code AGN propa and is, with a python-plugin,

A low-energy extension to correctly propagate particles with kinetic energy below their rest-mass was implemented in our

The basic propagation chain (in-source, extragalactic, Trafo to observer frame) is implemented for the (AGN)CRPropa part.

In a next step, a fit of the normalization of the gamma-flux to the lightcurve/SED enables prediction of the neutrino-flux.

In a next step, in the scope of the MICRO-project, the proton- and neutron-escape-spectrum during the flare will be