CPROPA SIMULATIONS FOR UHECR ANISOTROPY STUDIES

CRPROPA WORKSHOP 2023 – BOCHUM, GERMANY

SIMONE ROSSONI & GÜNTER SIGL, UNIVERSITY OF HAMBURG

OUTLOOK

GNETOHYDRODYNAMIC SIMULATIONS RAINFI **BARYON DENSITY EXTRAGALACTIC MAGNETIC FIELD CRPROPA SIMULATIONS CR**/Propa RESULTS **SKY MAPS** APS, Iron, Mass Density, AstrophysicalR **O ANGULAR POWER SPECTRUM O DIPOLE** No EGMP Prinzit Astro Astrolt 5 **USIONS**

Federal Ministry of Education and Research

CONSTRAINED MHD SIMULATIONS

Federal Ministry of Education and Research Constrained initial condition of the local Universe at back to z=60 in a comoving volume of 500 Mpc each side (ENZO).

The ENZO Collaboration: G.L.Bryan et al, ApJS (2013) J.G.Source et al, Mon. Not. R. Astron. Soc. (2015)

UHECRs propagation within a comoving volume of 250 Mpc each side (Milky Way at the center).

CONSTRAINED MHD SIMULATIONS

Primordial models: EGMF seeded at z=60uniform along each axis or described by a spectral power law.

EGMF Model Primordial2R 350 -300 -0 250 --1 (B(nG)) log₁₀(B(nG)) () 200 -Mbc) 150 -100 --4 -5 50 -0 100 350 150 200 250 300 50 0 х (Мрс)

UHI H

Federal Ministry of Education and Research

Astrophysical models: EGMF produced by magnetic feedback within halos with high number density.

3D CR/Propa SIMULATIONS

R.A.Batista et al, JCAP (2016)

- No EGMF
- Primordial2R
- Astrophysical
- AstrophysicalR

- Statistical

```
B_{rms} = 1 nG
\lambda_c = 1 Mpc
```

GMF Model

- Jansson and Farrar 2012

LENSING TECHNIQUE

Observation of 10.000 cosmic rays above 8 EeV. 10 source realisation of each combination of composition, source model and EGMF model. Cosmic average and variance of anisotropies observables (sky maps, multipoles, ...).

UΗ nn

Realisations and Analysis

SOURCE DISTRIBUTION MODELS

Difference in the local distribution due to the different probability densities.

Same large distance behaviour: cosmological principle.

Federal Ministry of Education and Research

MAGNETIC DEFLECTION

Primordial2R

Astrophysical

Federal Ministry of Education and Research

UΗ

Angular distribution between injected momentum and observed momentum of detected particles

AstrophysicalR

Angular deflection, Proton, Homogeneous, AstrophysicalR

Statistical

Protons, Homogeneous

MAGNETIC DEFLECTION

Homogeneous, Astrophysical

UH

пп

and Research

SKY MAPS

$$\phi(\hat{n}) = \frac{1}{N} \sum_{i=0}^{N} \delta(\hat{n} - \hat{n}_i) \simeq \frac{N_{i,j}}{N \cdot \Delta \Omega}$$

$$\Phi_{iso} = (4\pi)^{-1}$$

$$\psi$$

$$\delta_{\phi}(\hat{n}) = \frac{\phi(\hat{n}) - \Phi_{iso}}{\Phi_{iso}}$$

Federal Ministry of Education and Research

Homogeneous, No EGMF

SKY MAPS

Irons, Mass Density, Observer

No EGMF

Primordial2R

Irons, Mass Density, at Earth

Astrophysical AstrophysicalR

Statistical

MULTIPOLE EXPANSION

AstrophysicalR

 2σ isotrop

13

10

 3σ isotropy

10

13

Federal Ministry of Education and Research

Primordial2R

Statistical

All the maps contain one EGMF model (red) and the case without EGMF. The source model is Mass Density

MULTIPOLE EXPANSION WITH THE GALACTIC LENSING

AstrophysicalR

All the maps contain one EGMF model (red) and the case without EGMF. The source model is Mass Density

UH

Federal Ministry of Education and Research

Primordial2R

Statistical

DIPOLE

$$\phi(\hat{n}) = \phi_0 \left(1 + \hat{n} \cdot \vec{d} + \frac{1}{2}\hat{n} \cdot Q \cdot \hat{n} + \dots \right)$$

The dipole is the strongest indication of UHECR anisotropies

(120° away for the galactic center, energy evolution, ...)

Observer

A. Aab et al, Astrophys. J. (2018)

CONCLUSIONS

EGMF: highly magnetised space induces reduction of the anisotropy signal of the source distribution.

Composition: heavy injection implies higher values for the angular power spectrum (photodisintegration). Greater separation induced by the EGMF.

Galactic lensing: suppression of the high- multipole component due to the GMF. Low-multipoles weakly affected by the galactic field.

Dipole: Homogeneous source distribution corresponds to weaker dipole. Less magnetisation corresponds to higher dipole. The galactic deflection slightly increases the dipole signal.

