

Pavlo Plotko CRpropa 2023 25.09.2023

plotkopavlo.com pavlo.plotko@desy.de HELMHOLTZ

Who am I?

Xavier Rodrigues

Walter Winter

Astronomy Tournament Astrophysics Olympiad Astrophysics Conference

(1) From Denise Boncioli, 2022 Varenna

Standard combined fit

Standard combined fit

Type of courses

Simple Power-law with rigidity-dependent cut-off:

Type of courses

Simulated spectrums of jetted AGN:

DESY. 25.09.2023 | Combined fit of UHECRs with jetted AGN | Plotko Pavlo | pavlo.plotko@desy.de | plotkopavlo.com

The Hillas criterium

AGNs are the most luminous objects in the universe

Association with neutrino event from IceCube (TXS 0506+056)

BIG ASSUMPTION: all observed UHECRs are produced by jetted AGN

Adapted from Roberto Aloisio 2017

- 1. Switch from generic sources to simulated spectrums from jetted AGN for fitting
- Provide constraints on the models using UHECR and neutrino data *
- 3. Predict cosmogenic and source neutrino flux for future observations

ULTIMATE JETTED AGN MODEL

Source models

BL Lacs

No evidence of external fields

One-zone model

Model ingredient list:

Spherical radiation zone with blob size (R)

Injected CR spectrum is power-low with 2 and Maximum energy: (B) (B)

$$E_{\max} = 10^{20} \eta Z \left(\frac{B}{1G}\right) \left(\frac{R}{1pc}\right) eV$$

acceleration efficiency (η)

Magnetic field scaling as power law of L_{γ}

How much energy goes to CR compared to gamma (baryonic loading):

$$\xi_{\rm CR} = \frac{L_{\rm CR}}{L_e} \sim \frac{L_{\rm CR}}{L_{\gamma}}$$

Rodrigues X. et al 2018

No evidence of external fields

↓↓ One-zone model

Rodrigues X. et al 2018

DESY. 25.09.2023 | Combined fit of UHECRs with jetted AGN | Plotko Pavlo | pavlo.plotko@desy.de | plotkopavlo.com

Source models

BL Lacs

Source model

Flat-Spectrum Radio Quasars (FSRQ)

Large broadline region and dust torus

 $\bigcup_{i=1}^{n}$

External contributions of target photon field for CR interactions

Model ingredient list:

Spherical radiation zone with blob size (R)

Injected CR spectrum is power-low with 2 and Maximum energy:

 $E_{max} = 10^{20} \eta \left(\frac{B}{1G}\right) \left(\frac{R}{1pc}\right) eV$

acceleration efficiency (η)

Magnetic field scaling as power law of L_{γ}

How much energy goes to CR compared to gamma (baryonic loading):

 $\xi_{\rm CR} = \frac{L_{\rm CR}}{L_{\rm co}} \sim \frac{L_{\rm CR}}{L_{\rm co}}$

Rodrigues X. et al 2018

Source model

Flat-Spectrum Radio Quasars (FSRQ)

Large broadline region and dust torus

External contributions of target photon field for CR interactions

Neutrinos and UHECRs from blazar AGN

Population model

~1500 resolved blazars (above the Fermi flux threshold)

50% of FSRQs resolved by *Fermi*

only 15% of BL Lacs resolved by *Fermi*

Model ingredient list:

- Fermi catalog(3LAC)
- Observed diffuse γ-ray background
- Distributions of FSRQs and BL Lacs (Ajello)

```
Integrate over L<sub>v</sub>
```

PriNCe

Propagation including Nuclear Cascade

- Written in pure Python using Numpy and Scipy
- Directly solve the transport equation
- Large speed boost from sparse matrix algorithms
- Public available Analysis tools for parameters scan
- Written for combining source modelling and propagation
- Was developed by Jonas Heinze and Anatoli Fedynitch at DESY

Installation: *pip* install prince-cr

PriNCe

1D propagation:

- Without MF
- z<5

Photon fields:

- CMB
- EBL (Gilmore)
 Interaction:
- Adiabatic cooling
- Pair production
- Photo-hadronic
- Photo-disintegration

Source:

- Direct output from source modeling
- 4 injected elements to jetted-AGN (H, He, N, F)
- Up to 83 except elements
- Energy range: 10³-10¹⁴ GeV with 8 bins per decade
- Redshift dependency from FSRQ and BL Lacs distributions

Data:

- Auger spectrum and composition 2019
- Ice Cube spectrum and limits

Setup

UHECR and neutrino data

 χ^2 used to estimate goodness of fit and find best parameters:

$$\chi^{2} = \chi^{2}_{spectrum} + \chi^{2}_{\langle X_{max} \rangle} + \chi^{2}_{\sigma(X_{max})} + \chi^{2}_{\sigma(X_{max})} + \chi^{2}_{nu} + \left(\frac{\delta_{E}}{\sigma_{E}}\right)^{2}$$
Spoiler: $\chi^{2}_{nu} = 0$

Akaike information criterion (AICc) used to compare different models:

$$AICc = \chi^2 + 2k + \frac{2k^2 + 2k}{N - k - 1}$$

N – number of data points (37) k – number of free parameters (7-19)

4096 simulated model files from source modeling

Fe: up to 83 different escaped spectrums

DESY. 25.09.2023 | Combined fit of UHECRs with jetted AGN | Plotko Pavlo | pavlo.plotko@desy.de | plotkopavlo.com

Setup

- Results strongly depend on the air shower model.
- Low-lum BL Lacs are the main source of UHECR (local sources)
- 3. FSRQs are excluded for both scenarios
- 4. The fits are not sensitive to some elements

SIBYLL2.3d: best fit

SIBYLL2.3d: FSRQ limits

- Low-lum BL Lacs can explain UHECR data
- 2. No diffuse neutrinos
- 3. FSRQs are free source of neutrinos
- 4. FSRQs have the same parameters as Low-lum BL Lacs
- 5. Neutrino flux depends on composition

EPOS-LHC: best fit

DESY. 25.09.2023 | Combined fit of UHECRs with jetted AGN | Plotko Pavlo | pavlo.plotko@desy.de | plotkopavlo.com

- 1. Low-lum BL Lacs is explain contributor of UHECRs
- 2. Small fraction of High-lum BL Lacs is needed
- 3. Diffuse neutrino from High-lum BI Lacs
- 4. FSRQs are free source of neutrinos
- 5. FSRQs have the same parameters as Low-lum BL Lacs
- 6. Neutrino flux depends on composition

DEST. 20.09.2020 | Complete III of UnEURS with Jetted AGN | Plotko Pavio | pavio.plotko@desy.de | plotkopavio.com

Parameters of low-lum BL Lacs

Parameters of high-lum BI Lacs

High-lum BL Lacs and FSRQ

 FSRQ can not be UHECR source

 $\chi^2 / d.o.f. \approx \frac{1084}{30}$

High-lum BL Lacs and FSRQ

 FSRQ can not be UHECR source

2.
$$\chi^2 / d.o.f. \approx \frac{188.4}{30}$$

- 3. Baryonic loading < 243
- 4. Cosmogenic flux from jetted AGN is too low for all cases

Take-home messages

Jetted AGN can explain the UHECR data

EPOS-LHC:

SIBYLL 2.3d:

- 1. UHECR from Low- and High-lum BL Lacs
- 1. UHECRs from Low-lum BL Lacs
- 2. Low neutrino flux

2. High neutrino flux

FSRQs are free source of neutrinos

I am looking for sponsors/support for Ukrainian Astronomy and Astrophysics projects

Leibniz-Institut für AIP Astrophysik Potsdam

Open technical questions

- How to compare models to each other. "This model A is 3 sigma better compared to model B"
- How to calculate composition errors and consider the correlation between the fraction of injected elements.
- How properly put upper limits on contributions of FSRQ