Impact of a ACDM extension on UHECR propagation

CRPropa Workshop 25th of September

IVERSITÄT VECTOR

Janning Meinert

BERGISCHE UNIVERSITÄT OSFB1491

meinert@uni-wuppertal.de

OBSERVATORY

Cosmology Impact of a ACDM extension on UHECR propagation

CRPropa Workshop 25th of September

Janning Meinert

meinert@uni-wuppertal.de

UNIVERSITÄT VECTOR STIFTUNG SFIT 1386

BERGISCHE UNIVERSITÄT OSFB1491

Cosmology

Impact of a ACDM extension on UHECR propagation Astroparticlephysics

CRPropa Workshop 25th of September

Janning Meinert

meinert@uni-wuppertal.de

NIVERSITÄT VECTOR

BERGISCHE UNIVERSITÄT O WUPPERTAL

Epochs of the Universe

Epochs of the Universe

¹Hofmann 2013 Nature Phys. 10.1038/nphys2793

© Jessie Muir (modified)

redshift [z]

Hofmann 2013 Nature Phys. 10.1038/nphys2793

CMB Temperature [K]

© Jessie Muir (modified)

SU(2)_{CMB} Fit

Hahn + Hofmann 2018, MNRAS, arxiv:1810.01253

Cosmological parameters

4

	Parameter	ΛCDM (TT,TE,EE+lowE)	SU(2)
BBN?	Z _{re}	7.68 ± 0.79	6.23 ± 0.41
	Z [*]	1089.95 ± 0.27	1715.9 ± 0.19
	Zp	-	52.88 ± 4.06
	$H_0 [km s^{-1} Mpc^{-1}]$	67.27 ± 0.60	74.24 ± 1.46
	$\Omega_b h^2$	0.02236 ± 0.00015	0.0173 ± 0.0002
	Ω _m	0.3166 ± 0.0084	0.384 ± 0.006
	σ ₈	0.8120 ± 0.0073	0.709 ± 0.020
	$S_8 \equiv \sigma_8 (\Omega_m / 0.3)^{0.5}$	0.834 ± 0.016	0.8021 ± 0.0227
	Ω_{old}	_	0.113 ± 0.002
	Ω_{new}	-	0.0771 ± 0.0012

Hahn + Hofmann 2018, MNRAS, arxiv:1810.01253

How is T(z) modiefied?

Friedmann-Lemaître-Robertson-Walker Universe

energy density energy pressure $\frac{\mathrm{d}\rho}{\mathrm{d}a} = -\frac{3}{a} \left(\rho + P \right) , \quad s = \frac{\rho + P}{T} .$ continuity eq.: $a = \exp\left(-\frac{1}{3}\log\frac{s(T)}{s(T(z=0))}\right)$ $\frac{s(T)}{s(T(z=0))} = \frac{8}{2} \left(\frac{T}{T(z=0)}\right)^3, \ (T \gg T(z=0))$ $a = \frac{1}{z+1} = \left(\frac{1}{4}\right)^{\frac{1}{3}} \frac{T_0}{T} \quad \text{Changed T(z)}$

How do we change $T(z) = S(z) (1+z) T_0$

9

How do we change $T(z) = S(z) (1+z) T_0$

Isn't T(z) measured already?

How do we measure T(z)?

How do we measure T(z)?

Summary of T(z) effect

CMB Evolution

CMB Evolution

CMB Evolution

Propagation of UHECRs

redshift [z]

CR spectrum 1st Knee

14

CR spectrum

1st Knee

14

UHECR propagation with Prince-CR

UHECR propagation

####

UHECR propagation

16

Hadronic interactions

Hadronic Interaction models

Hadronic Interaction models

Cosmogenic neutrinos

Cosmogenic Neutrinos

CMB Evolution

How do we change $T(z) = S(z) (1+z) T_0$

Overview of different T(z)


```
Overview of different T(z)
```


Summary

JM et al. (2023) 2309.08451

© Jessie Muir (modified)

Thank you!

Dr. Leonel Dr. Alexander Dr. Björn M.Sc. Jonas Prof. K.-H. Morejón Sandrock Eichmann Kreidelmeyer Kampert

Supported by SFB 1491

And the Vector Foundation under Grant number P2021-0102

Extra slides

Screening effects due to massive gauge modes

SU(2)

S8 tension

S8 Tension

 CMB Planck CMB TT, TE, EE+lowE CMB Planck CMB TT, TE, EE+lowE+lensing · CMB ACT+WMAP

· WL KIDS-1000 Asgari et al. (2021) * WL KIDS+VIKING+DES-Y1 Asgari et al. (2020) * WL KIDS+VIKING+DES-YI Joudaki et al. (2020) * WL KEDS+VIKING-450 Wright et al. (2020) * WL KIDS+VIKING-450 Kohlinger et al. (2017) + WL KIDS-450 • WL KiDS-450 · WL DES-Y3 · WL DES-YI Troxel et al. (2018) · WL BSC-TPCF Hamana et al. (2020) · WL HSC-pscudo--C Hikage et al. (2019) · WL CFHTLenS Joudaki et al. (2017) * WL+GC HSC+BOSS Miyatake et al. (2022) * WL+GC DESI+CMB White et al. (2022) *WL+GC+CMBL KIDS+DES+eBOSS+DEL5 * WL+GC KiD5-1000 3x2pt Heymans et al. (2021) * WL+GC KilD5-450 3x2pt Joudaki et al. (2018) * WL+GC DES-Y3 3x2pt Abbott et al. (2021) * WL+GC DES-YI 3x2pt Abbott et al. (2018d) WL+GC KiDS+VIKING-450+BOSS Tröster et al. (2020) * WL+GC KiDS+GAMA 3x2pt van Uitert et al. (2018) · GC BOSS DR12 bispectrum Philcox et al. (2021) GC BOSS+eBOSS Ivanov et al. (2021) · GC BOSS power spectra Chen et al. (2021) * GC BOSS DR12 Tröster et al. (2020) * GC BOSS Galaxy Power Spectrum Ivanov et al. (2020) * GC+CMBL unWISE+Planck CMB lensing Krolewski et al. (2021) CC AMICO KIDS-DR3 Lesci et al. (2021) · CC DES-YI Abbott et al. (2020d) CC SDSS-DR8 Costanzi et al. (2019) ·CC XMM-XXL Pacatal et al. (2018) CC ROSAT (WIG) Mantz et al. (2015) · CC SPT ISZ Bocquet et al. (2019) · CC Planck tSZ Salvati et al. (2018) · CC Planck tSZ Ade et al. (2016d) · RSD Benisty (2021) · RSD 0.2 0.4 0.6 0.8 1.0 1.2 $S_8 \equiv \sigma_8 \sqrt{\Omega_m} / 0.3$

Aghanim et al. (2020d) Aghanim et al. (2020d) Aiola et al. (2020)

0.834 0.832 0.84

Early Universe

Late Universe

Hildebrandt et al. (2020) Hildebrandt et al. (2017) Amon et al. and Secco et al. (2021) Garcia-Garcia et al. (2021)

Kazantzidis and Perivolaropoulos (201

BBN??

Tanabashi+ PRD 2018

Why SU(2)CMB?

CMB radio excess

Seiffert et al. (2011)

ARCADE 2

Temperature = 2.725 K

Isn't T(z) measured already?

² To a very good approximation the spectral intensity $I(\nu)$ of today's CMB is given as $I_{z=0}(\nu)d\nu = 16\pi^2 \frac{\nu^3}{\exp\left(\frac{2\pi\nu}{T(z=0)}\right)-1}d\nu$ Mather et al. (1994). If we assume a T-z relation of $T(z = 0) = \frac{1}{f(z)}T(z)$ and a ν -z relation of $\nu(z = 0) \equiv \frac{1}{g(z)}\nu'$ with $f(z) \neq g(z)$, then the Stefan-Boltzmann law would still have redshifted according to the T-z relation: $\int d\nu I_{z=0}(\nu) = \frac{\pi^2}{15} T^4(z=0) = \frac{\pi^2}{15} \left(\frac{T(z)}{f(z)}\right)^4 = \left(\frac{1}{g(z)}\right)^4 \int d\nu' I_z(\nu').$ However, the maximum $v_{\text{max}} = \frac{2.821}{2\pi}T(z = 0)$ of the distribution $I_{z=0}(v)dv$ converts to a maximum $v'_{\max} = \frac{2.821}{2\pi} \frac{g(z)}{f(z)} T(z)$ of the distribution $I_z(\nu')d\nu' = 16\pi^2 \frac{(\nu')^3}{\exp\left(\frac{f(z)}{\sigma(z)}\frac{2\pi\nu'}{T(z)}\right) - 1}d\nu'$. Thus, $I_z(\nu')$ no longer

would be a blackbody spectrum.

e-Print: 2303.16744 [hep-th]

Energy loss length

Changed Energy Loss Length

Lensing

Cosmological parameters

Parameter	ΛCDM (TT,TE,EE+lowE)	SU(2)
Z [*]	1089.95 ± 0.27	1715.9 ± 0.19
Ω _m	0.3166 ± 0.0084	0.384 ± 0.006
σ ₈	0.8120 ± 0.0073	0.709 ± 0.020

KiDS Collaboration arxiv.org/pdf/2007.15633

σ_8 tension

https://kids.strw.leidenuniv.nl/cosmicshear2016.php
H_0 tension

distance ladder

CMB Temperature [K]

© Jessie Muir (modified)