

MODELING SUPERDIFFUSIVE PARTICLE TRANSPORT WITH CRPROPA

FREDERIC EFFENBERGER, <u>SOPHIE AERDKER</u>, LUKAS MERTEN, HORST FICHTNER - TPIV RUB CRPROPA WORKSHOP, BOCHUM - 27.09.2023

ANOMALOUS DIFFUSION SUPERDIFFUSION & SUBDIFFUSION

 $\langle (\Delta x)^2 \rangle \propto \kappa_{\xi} t^{\xi}$ mean square generalized displacement dilusion coefficient

 $0 < \xi < 1$: sub-diffusion

- $\xi = 1$: normal (Gaussian) diffusion
- 4 super-diffusion $\zeta > 1$:

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

Perrone et al. 2013

SUPERDIFFUSION EVIDENCE IN THE HELIOSPHERE

Electron fluxes upstream of interplanetary reverse shock detected by Ulysses, Perri & Zimbardo, 2007

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

Ion fluxes upstream of solar wind termination shock, Perri & Zimbardo, 2012

SUB- & SUPERDIFFUSION TIME- & SPACE-FRACTIONAL TRANSPORT EQUATION

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

Riesz derivative $\mathcal{X} = \mathcal{X}_{e}^{\prime\prime}$

RUHR

BOCHUM

UNIVERSITÄT

SUB- & SUPERDIFFUSION TIME- & SPACE-FRACTIONAL TRANSPORT EQUATION

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

 $\frac{f(x,t)}{\partial t} = {}_{0}D_{t}^{1-\beta} \left(\frac{\partial}{\partial x}V'(x) + \kappa \nabla^{\alpha}\right) f(x,t)$ Riesz derivative)< =)<e/1/2 d= 2

RUHR

BOCHUM

UNIVERSITÄT

SUPERDIFFUSION SPACE-FRACTIONAL DIFFUSION-ADVECTION EQUATION $\beta = 1$

 $\frac{\partial}{\partial t}f(x,t) + a\frac{\partial}{\partial x}f(x,t) = \kappa \frac{\partial^{\alpha}}{\partial |x|^{\alpha}}f(x,t) + \delta(x)$ $\int 2 =$

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

SUPERDIFFUSION STOCHASTIC DIFFERENTIAL EQUATION: LEVY FLIGHTS

$$dx = u(x)dt + \sqrt{2\kappa^{1/2}} dW_t$$

$$W_t$$

$$W$$

- Wiener process $dW_t \propto \eta_W t^{1/2}$ is exchanged by Lévy process $dL_{\alpha} \propto \eta_L t^{1/\alpha}$
- Random numbers η_L are drawn from α -stable Lévy distribution.

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

Sample of 10^7 random numbers drawn from a α -stable Lévy distribution

SUPERDIFFUSION STOCHASTIC DIFFERENTIAL EQUATION: LEVY FLIGHTS

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

LEVY FLIGHTS IMPLEMENTATION IN CRPROPA

 Stochastic Differential Equation solved with Euler-Maruyama scheme in SDESolver:

$$\vec{x}_{t+1} = \vec{x}_t + A_x \Delta t + B_x \vec{\eta}_x \Delta t^{1/\alpha}$$

- Lévy parameter α is set by **setLevy()** function, default is Gaussian ($\alpha = 2$)
- Random numbers $\eta_{x,i}$ are drawn from α -stable Lévy distribution (Chambers, Mellows & Stuck 1976)
- For now, only implemented for spatial diffusion

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

LEVY FLIGHTS IMPLEMENTATION IN CRPROPA

• B_{x} is given by SDEParameter, e.g. PureDiffusion, DiffusionAdvection:

$$B_{x} = \sqrt{2}\hat{\kappa}^{1/\alpha} = \sqrt{2} \begin{pmatrix} (\kappa_{\parallel}\epsilon)^{1/\alpha} \\ 0 \\ 0 \end{pmatrix}$$

Lévy parameter is considered to be the same in parallel and perpendicular direction to the magnetic field

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

1. TESTCASE: 1D SUPERDIFFUSION DELTA-INJECTION

Compare to distribution function f(x, t)approximated by Fourier Series by R. Stern et al. 2013

$$\frac{\partial f}{\partial t} = \kappa \nabla^{\alpha} f, \quad f(x,0) = \delta(x)$$

$$x_{t+1} = x_t + \sqrt{2\kappa^{1/\alpha}}\eta_x \Delta t^{1/\alpha}$$

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

Gaussian distribution (line) compared to Fourier series approximation for $\alpha = 1.5$ (dashed) over time

1. TESTCASE: 1D SUPERDIFFUSION DELTA-INJECTION

Decaying Lévy distribution

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

Power-laws in space profile

2. TESTCASE: 1D SUPERDIFFUSION DIFFUSION-ADVECTION AT SHOCK

Compare to distribution function f(x, t) approximated by Fourier Series by R. Stern et al. 2013

$$\frac{\partial f}{\partial t} = \kappa \nabla^{\alpha} f + a \frac{\partial f}{\partial x} + \delta(x), \quad f(x,0) =$$
$$x_{t+1} = x_t + a \Delta t + \sqrt{2} \kappa^{1/\alpha} \eta_x \Delta t^{1/\alpha}$$

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

RUHR UNIVERSITÄT BOCHUM

 $\delta(x)$

Construct time-dependent solution by summing of pseudo-particles (e.g. Merten et al. 2017)

$$f(x,t) = \sum f_t(x,t) \Delta T$$

DIFFUSION-ADVECTION EQUATION APPROXIMATE STATIONARY STATE WITH CRPROPA

Distribution $f_t(x, t)$ of pseudo-particles at time t

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

RUHR

BOCHUM

UNIVERSITÄT

2. TESTCASE: 1D SUPERDIFFUSION DIFFUSION-ADVECTION AT SHOCK

Effenberger et al. (in preparation)

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

2. TESTCASE: 1D SUPERDIFFUSION DIFFUSION-ADVECTION AT SHOCK

ANOMALOUS TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

PRELIMINARY: SUBDIFFUSION $\beta = 0.5$

Trajectories $X(S_t)$ are obtained by subordination from two independent processes: $X(\tau)$, S_{τ}

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

Magdziarz & Weron, 2007

interpolate X(SE) from X(Z)

SUMMARY & OUTLOOK

- Model superdiffuse transport with modified version of CRPropa3.2
 - SDE approach to solve Fractional Fokker-Planck equation
 - Random numbers drawn from the α -stable Lévy distribution ${ igodot}$
- Delta-injection and diffusion-advection equation fit with Fourier series approximation from Stern et al., 2013
- Future: Distinguish between parallel & perpendicular Lévy parameter
- Future: Investigate subdiffusion & combination of sub- & superdiffusion further

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

RIEMANN-LIOUVILLE & RIESZ FRACTIONAL DERIVATIVE

$${}_{0}D_{t}^{1-\beta}f(t) = \frac{1}{\Gamma(\beta)}\frac{d}{dt}\int_{0}^{t} (t-s)^{\beta-1}$$

$$\nabla^{\alpha} f(x) = -\frac{1}{2\cos(\alpha\pi/2)} (-\infty D_{x}^{\alpha} +$$

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

f(s)ds

 $xD^{\alpha}_{+\infty})f(x)$

SUBORDINATOR S_t from skewed α -stable levy distribution

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

	-	
	-	
	1	
	1	
	-	
	-	
	_	
	1	
	-	
	-	
	-	
	_	
	1	
	1	
	-	
	_	
)		

TEST SUBDIFFUSION FROM SKEWED α -STABLE LEVY DISTRIBUTION

SUPERDIFFUSIVE TRANSPORT - S. AERDKER - TPIV RUB - SOPHIE.AERDKER@RUB.DE

