MODELING SUPERDIFFUSIVE PARTICLE TRANSPORT WITH CRPROPA

FREDERIC EFFENBERGER, SOPHIE AERDKER, LUKAS MERTEN, HORST FICHTNER - TPIV RUB
CRPROPA WORKSHOP, BOCHUM - 27.09.2023

ANOMALOUS DIFFUSION

SUPERDIFFUSION \& SUBDIFFUSION

$0<\xi<1$: sub-diffusion
$\xi=1$: normal (Gaussian) diffusion
$\xi>1$: super-diffusion

Perrone et al. 2013

SUPERDIFFUSION

EVIDENCE IN THE HELIOSPHERE

Electron fluxes upstream of interplanetary reverse shock detected by Ulysses, Perri \& Zimbardo, 2007

Ion fluxes upstream of solar wind termination shock, Perri \& Zimbardo, 2012

SUB- \& SUPERDIFFUSION

TIME- \& SPACE-FRACTIONAL TRANSPORT EQUATION

$$
\begin{aligned}
& \quad \frac{\partial f(x, t)}{\partial t}={ }_{0} D_{t}^{1-\beta}\left(\frac{\partial}{\partial x} V^{\prime}(x)+\kappa \nabla^{\alpha}\right) f(x, t) \\
& \text { Riemann-Liouuille } \quad k=\angle \xi^{1 / \xi} \text { Riesz } \\
& \text { dractional derivative }
\end{aligned}
$$

SUB- \& SUPERDIFFUSION
TIME- \& SPACE-FRACTIONAL TRANSPORT EQUATION

$$
\frac{\partial f(x, t)}{\partial t}={ }_{0} D_{t}^{1-\beta}\left(\frac{\partial}{\partial x} V^{\prime}(x)+\kappa \nabla^{\alpha}\right) f(x, t)
$$

Riemann-Lioucille fractional derivative

$$
=1 \text { for } \beta=1
$$

SUPERDIFFUSION

SPACE-FRACTIONAL DIFFUSION-ADVECTION EQUATION

$$
\beta=1
$$

$$
\begin{aligned}
\frac{\partial}{\partial t} f(x, t)+a \frac{\partial}{\partial x} f(x, t) & =\kappa \frac{\partial^{\alpha}}{\partial|x|^{\alpha}} f(x, t)+\delta(x) \\
{[x] } & =\mathrm{m}^{\alpha} / \mathrm{s}
\end{aligned}
$$

SUPERDIFFUSION

STOCHASTIC DIFFERENTIAL EQUATION:
 LEVY FLIGHTS

$$
\begin{aligned}
\mathrm{d} x & =u(x) \mathrm{d} t+\sqrt{2} \kappa^{1 / 2} \mathrm{~d} W_{t} \\
\mathrm{~d} x & =u(x) \mathrm{d} t+\sqrt{2} \kappa^{1 / \alpha} \mathrm{d} L_{\alpha, t}
\end{aligned}
$$

- Wiener process $\mathrm{d} W_{t} \propto \eta_{W} t^{1 / 2}$ is exchanged by Lévy process $\mathrm{d} L_{\alpha} \propto \eta_{L} t^{1 / \alpha}$
- Random numbers η_{L} are drawn from α-stable Lévy distribution.

Sample of 10^{7} random numbers drawn from a α-stable Lévy distribution

SUPERDIFFUSION

STOCHASTIC DIFFERENTIAL EQUATION:
 LEVY FLIGHTS

LEVY FLIGHTS

- Stochastic Differential Equation solved with Euler-Maruyama scheme in SDESolver:

$$
\vec{x}_{t+1}=\vec{x}_{t}+A_{x} \Delta t+B_{x} \vec{\eta}_{x} \Delta t^{1 / \alpha}
$$

- Lévy parameter α is set by setLevy() function, default is Gaussian ($\alpha=2$)
- Random numbers $\eta_{x, i}$ are drawn from α-stable Lévy distribution (Chambers, Mellows \& Stuck 1976)
- For now, only implemented for spatial diffusion

IMPLEMENTATION IN CRPROPA

- Lévy parameter is considered to be the same in parallel and perpendicular direction to the magnetic field

1. TESTCASE: 1D SUPERDIFFUSION

Compare to distribution function $f(x, t)$ approximated by Fourier Series by R. Stern et al. 2013

$$
\begin{gathered}
\frac{\partial f}{\partial t}=\kappa \nabla^{\alpha} f, \quad f(x, 0)=\delta(x) \\
x_{t+1}=x_{t}+\sqrt{2} \kappa^{1 / \alpha} \eta_{x} \Delta t^{1 / \alpha}
\end{gathered}
$$

Gaussian distribution (line) compared to Fourier series approximation for $\alpha=1.5$ (dashed) over time

1. TESTCASE: 1D SUPERDIFFUSION

Decaying Lévy distribution

Power-laws in space profile

2. TESTCASE: 1 D SUPERDIFFUSION DIFFUSION-ADVECTION AT SHOCK

Compare to distribution function $f(x, t)$ approximated by Fourier Series by R. Stern et al. 2013

$$
\begin{aligned}
& \frac{\partial f}{\partial t}=\kappa \nabla^{\alpha} f+a \frac{\partial f}{\partial x}+\delta(x), \quad f(x, 0)=\delta(x) \\
& x_{t+1}=x_{t}+a \Delta t+\sqrt{2} \kappa^{1 / \alpha} \eta_{x} \Delta t^{1 / \alpha}
\end{aligned}
$$

Construct time-dependent solution by summing of pseudo-particles (e.g. Merten et al. 2017)
$f(x, t)=\sum f_{t}(x, t) \Delta T$

DIFFUSION-ADVECTION EQUATION APPROXIMATE STATIONARY STATE WITH CRPROPA

Distribution $f_{t}(x, t)$ of pseudo-particles at time t

Summed distribution of pseudo-particles $f(x, t)=\sum f_{t}(x, t) \Delta T_{i}$

2. TESTCASE: 1D SUPERDIFFUSION

Effenberger et al. (in preparation)

2. TESTCASE: 1D SUPERDIFFUSION

 DIFFUSION-ADVECTION AT SHOCK

PRELIMINARY: SUBDIFFUSION

$\beta=0.5$

- Trajectories $X\left(S_{t}\right)$ are obtained by subordination from two independent processes: $X(\tau), S_{t}$

Magdziarz \& Weron, 2007

$$
\text { interpdote } X\left(s_{t}\right) \text { frem } X(\tau)
$$

SUMMARY \& OUTLOOK

- Model superdiffuse transport with modified version of CRPropa3.2
- SDE approach to solve Fractional Fokker-Planck equation
- Random numbers drawn from the α-stable Lévy distribution
- Delta-injection and diffusion-advection equation fit with Fourier series approximation from Stern et al., 2013
- Future: Distinguish between parallel \& perpendicular Lévy parameter
- Future: Investigate subdiffusion \& combination of sub- \& superdiffusion further

RIEMANN-LIOUVILLE \& RIESZ FRACTIONAL DERIVATIVE

$$
{ }_{0} D_{t}^{1-\beta} f(t)=\frac{1}{\Gamma(\beta)} \frac{d}{d t} \int_{0}^{t}(t-s)^{\beta-1} f(s) d s
$$

$$
\nabla^{\alpha} f(x)=-\frac{1}{2 \cos (\alpha \pi / 2)}\left(-\infty D_{x}^{\alpha}+{ }_{x} D_{+\infty}^{\alpha}\right) f(x)
$$

SUBORDINATOR S_{t}

FROM SKEWED α-STABLE LEVY DISTRIBUTION

TEST SUBDIFFUSION

[^0]
[^0]: FROM SKEWED α-STABLE LEVY DISTRIBUTION

